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ABSTRACT

POLICY COMPLIANCE, CONFIDENTIALITY AND COMPLEXITY

IN COLLABORATIVE SYSTEMS

Paul D. Rowe

Andre Scedrov

Collaboration among organizations or individuals is common. While these participants are

often unwilling to share all their information with each other, some information sharing is un-

avoidable when achieving a common goal. The need to share information and the desire to keep it

confidential are two competing notions which affect the outcome of a collaboration. When collab-

orating agents share sensitive information to achieve a common goal it would be helpful to them

to decide whether doing so will lead to an unwanted release of confidential data. These decisions

are based on which other agents are involved, what those agents can do in the given context, and

the individual confidentiality preferences of each agent.

This thesis proposes a formal model of collaboration which addresses confidentiality concerns.

We draw on the notion of a plan which originates in the Artificial Intelligence literature. We

use data confidentiality policies to specify the confidentiality concerns of each agent, and offer

three ways of defining policy compliance. We also make a distinction between systems containing

only well-balanced actions in which the pre- and post-conditions are of the same size, and general

systems that contain un-balanced actions.

For each definition of policy compliance and for each type of system, we determine the de-

cidability and complexity of scheduling a plan leading from a given initial state to a desired goal

state while simultaneously deciding compliance with respect to the agents’ policies.
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Chapter 1

Introduction

1.1 Motivation

With information and resources becoming more distributed, interaction with external services is

becoming more important. More and more software is being developed which is designed to foster

collaboration through communication, resource sharing and data sharing. Collaborating agents

are typically viewed as having a cooperative relationship in which they share a common goal. A

common example can be found in companies which have a variety of departments working together

to bring a product to market. In such situations confidentiality among departments is not always

an obvious concern.

However, just because organizations or individuals are willing to collaborate does not mean

they are ready to share all their information or resources. While much of the information they

do share may be general and harmless, some of the information is sensitive, such as detailed

sales reports at an organizational level or social security numbers and credit card numbers at an

individual level. There is an interplay between achieving a collaborative goal on the one hand, and

guarding sensitive information on the other. The decision about which pieces of information to

share and which pieces to guard is usually based on a number of factors related to trust. Different
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participants can be trusted with different information in different contexts. Let us consider some

examples.

When Alice eats at a restaurant she usually pays with a credit card. In order to pay for the

meal she must give her card to the waiter, Bob, who takes it away for validation. She trusts the

waiter, Bob, not to write down her card number or share it with anybody else. If she met Bob in

a different social situation, however, she might not give him her credit card in that social context.

Similarly, she doesn’t give her credit card to her friends even though she may trust them. This is

because her friends have no legitimate reason to learn her card number. Alice’s decision to share

her card number is based on necessity to achieve the goal of paying for dinner, and trust in the

restaurant process. Both of these factors are dependent on the situation and the individual.

Consider another scenario where two competing companies make a temporary and partial

strategic alliance. This might occur, for example, if they want to forecast the direction of the

market in a collaborative way. Generally these companies will not trust each other with their

business secrets, but they will have to share something to create an accurate forecast. They may

first start with a contract that limits how the shared information will be used or who it can be

shared with. This serves to change the context of the interaction. They build mutual trust by

explicitly limiting their actions to ones which are acceptable by both sides.

Personal medical information is also quite sensitive. Hospitals take great care to ensure that

information is shared and protected appropriately. There are quite detailed laws which specify

exactly how a hospital may or may not distribute medical records. Some level of sharing is

unavoidable. In order for a procedure to be covered by a patient’s insurance company, the hospital

must tell the insurance company what procedures were performed, as well as the diagnosis. Only

then can the insurance company decide if it will cover the cost. But the insurance company

should not be given other private information about the patient. Hospitals may also provide

aggregate data on patients to students for educational purposes. This aggregate data should be

appropriately sanitized for release to students. The same information, however, might not be
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acceptable for release to the general public.

Finally, when doing scientific research, researchers must find a balance between sharing too

much information and not enough. On one hand, a principal goal of research is to obtain and

publish results. On the other hand, if researchers provide their raw data to others too soon, another

group may announce the results first. Data sharing is prominent in the fields of comparative

genomics and systems biology where the focus is on integrating and analyzing large amounts

of dynamic and growing biological data [67, 32]. Scientific data sharing also has the converse

problem. Scientists often rely on data from outside sources. The choice of whether or not to use

outside data depends on the source of the data. The choice also depends on whether the outside

data is consistent with the local confidential data. Research groups may have informal policies,

or practices that determine when they are willing to incorporate outside data into their results.

These examples serve to demonstrate that confidentiality of information is not an absolute

notion. This may be viewed as a special case of privacy being dependent on context [6]. Not only

does confidentiality depend on the context of an interaction, it also depends on the personal pref-

erences of the agents involved. In these examples the agents have already implicitly or explicitly

formulated an idea of which information flows are acceptable and which are unacceptable, or at

least undesirable. Thus when attempting to model and analyze these interactions the confiden-

tiality preferences or policies of the agents play a crucial role. The first question to ask about

these scenarios is whether the agents are able to reach their common goal in a way that complies

with each of the agents’ confidentiality policies.

In this thesis we present a model of collaborative systems at an abstract level designed to

act as a formal framework in which we might answer such questions. We draw on previous

work in planning [11, 36, 51, 16, 21] and state transition systems and their connection to linear

logic [25, 26]. We use local state transition systems in which we model local or confidential data

through the use of a syntactic partition of predicate symbols. The global system configuration

can then be thought of as a collection of local configurations (comprised of confidential or local
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facts) together with some shared public configuration (comprised of group or public facts). The

confidential or local facts are only visible and accessible to the local agent (indicated syntactically),

although another agent may have another copy stored in their local configuration. We force the

global configuration to change incrementally through local transitions that affect at most one local

configuration at a time. A collaborative plan is then a sequence of transitions which takes the

system from some initial global configuration to an agreed goal configuration. In fact, there may

be many configurations that satisfy some goal condition.

We assume that the agents are further constrained by their own confidentiality concerns. These

are expressed explicitly as confidentiality policies, which are essentially sets of configurations that

the agents deem undesirable. We call such configurations “critical”. We offer three possible inter-

pretations of the policies by giving three definitions of policy compliance, which may correspond

to various levels of trust among the agents.

The first interpretation of policies is system compliance. A system is compliant if there is no

way for the agents to reach a critical configuration. This might be appropriate for a situation in

which the agents are generally untrusting such as the example above with competing companies.

The contract they create can serve to limit each agent’s actions in a way that makes any critical

configuration unreachable. That is, any sequence of actions is safe to use because no sequence can

create a critical configuration.

The second interpretation is weak plan compliance. A weakly compliant plan is one which avoids

the critical configurations. Weak plan compliance is violated only when the agents actually reach a

critical configuration while following a particular plan. This is a much weaker interpretation than

system compliance which considers any possible future actions of the agents. This interpretation

emphasizes the current knowledge of the agents along a single plan. Weak plan compliance is more

appropriate for situations like the one above in which Alice uses a credit card at a restaurant. She

trusts the waiter not to write down her card number within the restaurant process even though

he can. So although a critical configuration, in which the waiter retains Alice’s card number,
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is reachable, she trusts the waiter to follow the standard restaurant procedure and not use the

actions available to him to create the critical configuration.

The final interpretation is simply called plan compliance. This interpretation provides an

intermediate level of protection between system compliance and weak plan compliance. Intuitively,

if a plan is compliant it protects those agents who follow the plan against those who may choose

to deviate from the plan. In particular, if any subset of the agents deviate from a compliant plan

then as long as the other agents abort, those who deviated can never reach a configuration which

is viewed as critical by those who did not deviate. This may also be appropriate for situations

involving competing companies. In contrast to system compliance, this interpretation considers

only one plan at a time. Instead of implying that any sequence of actions is safe to use, it implies

that a specific sequence is safe to use even if everybody else behaves differently.

The confidentiality policies themselves are quite flexible. In particular, they can express notions

of current knowledge. For example, Alice’s policy can specify that Bob should not be able to learn

her current password. Her policy allows Bob to learn her old password as long as he does not

learn her current password. This is an advantage of a state-based approach to confidentiality as

opposed to the more trace-based approach of Non-Interference [60, 27, 52]. Declassification has

to be handled very carefully in that setting [54, 61, 57].

Additionally, we consider a distinction between systems that only contain well-balanced actions,

which have the same number of facts in both the pre-conditions and post-conditions, and general

systems that allow un-balanced actions in which either the pre- or the post-conditions may have

more facts. Intuitively, systems with well-balanced actions correspond to a setting in which the

agents each have a database of a fixed, limited number of fields. The actions correspond to

updating the fields instead of creating new fields. This restriction guarantees that the size of

the global configuration remains constant throughout an execution of the system. Systems that

contain un-balanced actions will have executions that grow and shrink the size of the global

configuration. This distinction plays an important role in the results of this thesis.
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The main results of this thesis are about the decidability and complexity of scheduling a

plan which is compliant with all of the agents’ confidentiality policies, that leads from an initial

configuration to a goal configuration. We refer to this problem as the Collaborative Planning

Problem with Confidentiality, and we determine its complexity with respect to each of the three

definitions of policy compliance, considering first well-balanced systems which contain only well-

balanced actions, then general systems which may contain un-balanced actions. This yields six

main theorems, summarized in Table 1.1.

System Weak Plan Plan

Compliance Compliance Compliance

Well-Balanced
PSPACE PSPACE PSPACE

Systems

General
EXPSPACE Undecidable Undecidable

Systems

Table 1.1: Summary of the complexity results.

This figure helps illuminate the impact of various modeling decisions on the decidability and

complexity of the Collaborative Planning Problem with Confidentiality. In particular, the problem

is significantly more complex for general systems. Furthermore, in general systems the decidability

is dependent upon which definition of policy compliance we use. In going from system compliance

to (either version of) plan compliance in the general case, the problem goes from being decidable

to being undecidable.

In addition to these decidability and complexity results, we also demonstrate the logical founda-

tion of our approach in a variant of linear logic [25, 36]. While this is not necessary in determining

the complexity of the planning problem, it relates our approach to a number of similar formalisms

which have had success in the past. On the one hand, there is a wide literature on viewing the

classical planning problem in logical settings [36, 49, 11, 55]. On the other hand, multiset rewriting
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formalisms have proved useful in the analysis of security protocols [20, 12] as well as in the field

of computation [41, 38, 39, 37, 40].

Most of the results of this thesis have already been published. In particular, the reader can

find the majority of this thesis in [33, 35, 34]. The original ideas were in [35], but the notion of

policy compliance was only introduced in the full version of that paper [33]. Generally speaking,

Chapters 3 and 5 contain the contents of [33] while Chapter 4 contains the contents of [34]. In

Chapter 2 we have re-packaged the definitions from all three papers in order to unify the results.

1.2 Related Work

Before getting to the details of the current thesis, it may be useful to discuss some related work

in order to understand the results that follow in their proper context. We discuss very briefly

only those papers that have contributed the most to our picture of the field. It is certainly not a

complete survey of all the relevant work. Generally speaking, the connections to other work can

be found along two dimensions: similarity in motivation, and similarity in methods or formalism,

with a sizable intersection of these two groups.

Let us begin by mentioning some work that shares similar motivations. On the applied side of

the scale, there are numerous works about how to achieve confidentiality in specific settings such

as scientific data sharing [32, 67], and the controlled release of medical information [68]. These

approaches tend to address particular details of the situation in question, and therefore lack the

abstractness necessary for capturing a wide range of scenarios.

While the focus of this thesis is on policy compliance, other authors have focused on defining

metrics to measure the amount of privacy lost in specific algorithms. For example, [29, 28] analyze

the privacy loss of a variety of algorithms designed to collaboratively schedule meetings. Their

methods also apply to a broader class of distributed constraint optimization problems in which

privacy issues may arise.
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In [1, 17] the authors present a model that accounts for three types of participants: Byzantine,

altruistic and rational. This is a framework meant to design and analyze protocols and processes

in which some agents act in their own self interest, some can act in arbitrary ways, and some

follow a deterministic set of instructions. The concept is general, but the incentives depend on the

specific instance. Analyses are carried out on a case by case basis. At a more abstract level, [66]

characterizes boolean functions that can be non-cooperatively computed. These are functions

for which the participants will honestly state their input values to a central, trusted algorithm,

assuming the agents care more about learning the outcome of the function than the input values

of other agents. All of these papers incorporate explicit utility functions. While these differ from

our confidentiality policies in detail, they represent similar confidentiality constraints that must

be satisfied by “successful” executions.

While our notion of confidentiality depends on reaching a particular configuration or not,

other notions have been considered which focus on an adversary’s ability to distinguish between

two traces. For example [2, 3] define secrecy in this way. This is very much in the spirit of non-

interference [54, 60, 27, 52] in which secret, or High, variables should not leak to public, or Low,

variables. These distinctions tend to be static and absolute, which makes them inflexible and hard

to adapt to different contexts. Furthermore, the focus is on the past value of certain variables,

while our confidentiality policies have the ability to express knowledge of the current configuration.

This is one advantage of a state-based approach. Declassification must be handled very carefully

in a trace-based setting [54, 61, 57]. On the other hand, in a state-based approach one must

typically model all actions explicitly, while trace-based approaches consider more implicit means

of reasoning.

At the intersection of work with similar motivation and work with similar methods, we come to

a general, formal model for privacy in [6, 7] called Contextual Integrity. The authors focus on more

than just confidentiality. They consider more general norms for the appropriate transmission of

information. They consider both positive and negative norms which respectively generalize “allow”
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and “deny” rules in traditional access control. As the name suggests, the authors also emphasize

the importance of context in determining which norms are applicable in a given situation. This

determination may be imposed externally by law, or internally in the form of company privacy

policies. Indeed the importance of context was brought to our attention by these papers. The

underlying formalism is a different (although similar) state transition system called a concurrent

game structure which provides the semantics for alternating time temporal logic [4].

Our formalism also shares some similarities with the Dolev-Yao model of security proto-

cols [19, 20] in which a powerful intruder tries to disrupt communication between honest protocol

participants. However, there are some key differences between the Dolev-Yao model and the model

in this thesis which arise from differences in motivation. In the Dolev-Yao model used to analyze

security protocols the attacker is much more powerful than the honest protocol participants. Our

current work uses a model in which there is no external attacker, and intuitively, the participants

are evenly matched, and they are more capable than the honest participants in security protocols,

e.g. they may loop and they may have unbounded memory. This “closed-room” setting already

provides interesting dynamics which are worth investigating.

We also contrast the undecidability results in this thesis with similar undecidability results

in security protocol analysis [20]. While the Dolev-Yao model allows the participants and the

attacker to create nonces, or fresh values, the model in this thesis does not currently allow for

such fresh value creation. This is a notable difference because the undecidability results of [20]

rely on the use of nonces, whereas we obtain undecidability in this work without them. In some

ways, our current model is similar in spirit to some features of the Dolev-Yao model of contract

signing protocols [14, 15] if all participants are “optimistic.”

Moving towards work with similar methods and formalisms, we point out that there may be

strong connections between our complexity and undecidability results, and similar results from

“classical” planning in artificial intelligence. The complexity of the planning problem has been

shown to be sensitive to changes in the details of the problem statement [21, 16] regarding the
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use of function symbols, deletion lists and negative pre-conditions. We have not explored the

possible connections and equivalences between the problems of this work and problems in classical

planning.

Chapter 5 of this thesis demonstrates the connection between our formalism and affine logic

which is a variant of linear logic. Linear logic has been shown to be useful in a number of

areas of computer science, but or particular relevance is it usefulness in artificial intelligence and

planning [36]. It has served well as a formalism for the discrete aspects of the planning problem.

It has also been modified in [62] to incorporate constraints that correspond to the more continuous

aspects of planning problems that one encounters in the real world. Perhaps ideas from this work

could be incorporated into our formalism in a natural way.

Finally we would like to point out the similarity between our formalism and Petri nets. This

connection is made more explicit in Section 4.1. However, that section only considers a very

general case. It is possible that results from Petri net theory might be useful in settling future

problems in the current setting of confidentiality in collaboration.

10



Chapter 2

Preliminaries

2.1 Defining the Model

We begin by describing the underlying structure of our model of collaboration. At a high level, the

model has four main components. Being an evolving system, there must be a way of describing

the configuration of the system at any given moment. Additionally, we describe how the agents

transform the configurations from one to another via local actions. In our setting the agents also

have some (common) goal of the collaboration, as well as (distinct) confidentiality concerns. These

concerns are expressed as confidentiality policies. We now introduce each of these four components

one at a time.

2.1.1 Configurations

Building the description of a configuration from the ground up, we have an underlying signature

Σ of constants, variables, and predicate symbols. For the purposes of this thesis we assume that

Σ is finite, that is it has finitely many symbols. A fact is a ground, atomic predicate over multi-

sorted terms. Facts have the form, P (t̄) where P is a predicate symbol and t̄ is a tuple of terms

containing no variables. A configuration is a multiset of facts. We use the letters U, V,W,X, Y,
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and Z to represent multisets of facts. We take both XY and X, Y to denote the multiset union

of multisets X and Y . For any fact P (t̄), we use P (t̄)k to denote P (t̄), P (t̄), . . . , P (t̄)︸ ︷︷ ︸
n times

and P (t̄)0

to indicate there are no instances of the fact P (t̄).1

The global configuration is divided into different local configurations each of which is accessible

to a specified agent. There is also a public configuration that is publicly accessible to all agents

involved in the collaboration. We are considering interactions that take place in a “closed-room”

setting, so we can ignore concerns about an outside intruder. The separation of the global con-

figuration is done via a partition of the predicate symbols. We typically annotate local predicate

symbols with the identity of the agent who owns it. So, for example, Alice’s local facts will look

like PA(t̄) or even perhaps just A(t̄). The interpretation is that Alice has the information t̄ kept

locally. Any predicate symbol not explicitly annotated with an identity is public. We typically

use N,R, or C as public predicates representing a public network, register or counter respectively.

The predicate symbols act like fields of a database in which information may be stored, and the

syntactic form of the predicate determines if the fact is local to a given agent or if it is public.

The global configuration is the multiset union of the local configurations and the public con-

figuration:

Z = ZA1 , ZA2 , . . . , ZAn , Zpub

where ZAi is the local configuration of agent Ai and Zpub is the public configuration. More

generally, we use XA to denote any multiset of facts all of which are local to agent A, and Xpub

to denote any multiset of facts all of which are publicly accessible.

Let us start a running example to help demonstrate the definitions. This example is motivated

by the concept of secret sharing [65]. Suppose Alice knows a secret number (say a passkey). For

concreteness, let the number be 15. She also knows that Bob has an additive share of the passkey,

say 7. The goal of their interaction will be for Alice to convey the secret passkey, 15, to Bob
1 Because our signature does not have any function symbols, its finiteness implies that there are only finitely

many facts which are expressible in the signature. We could alternatively allow function symbols but fix the nesting
depth of function application. This would have the same effect and only Lemma 3.1.1 would change.
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without revealing the secret in the public configuration (perhaps Charlie is also in the room).

We will say that the triple (A, 15, pky) means that “Alice’s passkey is 15”, and that the triple

(B, 7, share) mean that “Bob’s share is 7”. Similarly, (A, 8, share) means that “Alice’s share is 8”.

Then the initial configuration W of the system might look like the following:

W = A1(A, 15, pky), A2(B, 7, share), B1(B, 7, share)

That is, Alice knows both her passkey and Bob’s share, while Bob only knows his share. If

Charlie also begins with some information then we would need to explicitly add more facts to the

configuration. Before continuing the example we must explain how the agents can transform the

configuration.

2.1.2 Local Actions

Each agent has a set of actions which transform the global configuration. Under the interpretation

of the local predicates as accessibility restrictions it is natural to restrict the actions to conform

to that interpretation. Thus the actions are local in the sense that each action can only depend

on the local facts of at most one agent. They must have the form XAXpub →A YAYpub, where the

agent who owns the action (indicated by the subscript on the arrow) is the same agent who owns

any local facts mentioned (on both the right and left of the arrow). Another way of viewing this

restriction is that agent A does not have either read or write access to any of the predicates which

are local to other agents. Figure 2.1 gives a graphical representation of this locality restriction.

The actions work like re-writing rules. XAXpub are the pre-conditions of the action and YAYpub

are the post-conditions of the action. The pre-conditions must be present in the configuration for

the action to be enabled. By applying the action, the pre-conditions are erased and replaced

with the post-conditions. The rest of the configuration remains untouched. Thus, we can apply

the action XAXpub →A YAYpub to the global configuration V XAXpub to get the global configura-

tion V YAYpub. Since several actions may be enabled simultaneously, we assume the actions are
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Figure 2.1: The flow of information with local actions.

applied nondeterministically.

Returning to our running example, if Alice wants to convey her secret passkey to Bob, she

should publish her share of the passkey. That is, she should use the following action:

r1 : A1(A, 15, pky), A2(B, 7, share) →A A1(A, 15, pky), A2(B, 7, share), N(A, 8, share)

Notice that this action only makes reference to her local predicates A1 and A2 and to the public

predicate N . Also, in order for Alice to remember the passkey it also needs to appear in the

post-conditions, otherwise it will be erased from her local configuration. Applying this action to

the initial configuration W from above yields the configuration

A1(A, 15, pky), A2(B, 8, share), N(A, 7, share), B1(B, 8, share).

In contrast to the above example which uses a propositional action which does not contain any

free variables, we also allow first-order actions in which all free variables are implicitly universally

quantified. A first-order action is enabled if there is a substitution of constants for variables in

which the resulting propositional action is enabled. There may be several substitutions which

enable the first-order action. Again, we assume the substitution is chosen nondeterministically.

Although some or all of the predicates in a first-order action will contain free variables, we

will often abuse terminology and call these predicates facts. So for example, when we count the

number of facts in the pre-condition of a first-order action, we are really counting the number

of facts that occur under any substitution. Since this number does not change under different

substitutions, there is no ambiguity.
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Given a set of first-order actions, it is possible to propositionalize them by applying every

possible substitution. If the underlying signature Σ is finite (which we assume in this work), then

this process will expand the size of the set of actions exponentially. We will be explicit about

whether an action is first-order or propositional whenever the distinction is important. In all

other cases we will simply use the word action.

There is a small detail that deserves some attention. In the standard Dolev-Yao model, the

intruder is always assumed to have the same set of basic actions which includes reading any message

from the network. This is a useful assumption because it considers the worst-case scenario. In our

setting, we do not force every agent to have such actions, although we certainly do not preclude

such a situation. Thus, if a term appears in a public predicate, it may not be accessible to every

agent. The idea is to have a system that is as general as possible by limiting the number of

assumptions we have about it. Although we, as modelers, do not assume the agents have all the

Dolev-Yao actions, the agents themselves might assume the others do have those actions. This

assumption could be reflected their decision about which configurations are considered to violate

their confidentiality (see Section 2.1.4).

2.1.3 Goal Configurations and Reachability

Since we are considering situations in which the agents are collaborating, we need a way of express-

ing the goals of collaboration as well as the reachability of those goals. Naturally, the reachability

of a configuration depends on what actions are available to the agents. That is, systems with

different actions behave differently, so we need a way to specify which system we are studying.

Definition 2.1.1. A local state transition system T = (Σ, I, R) is a triple where Σ is the signature

of the underlying language, I = {A1, . . . , An} is a finite set of agents and R is a set of local actions

owned by those agents. For convenience we let RA denote the set of A’s local actions. Hence

R =
⋃

A∈I RA.
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We often use the abbreviation LSTS for local state transition system, as well as abbreviating it

to the one word “system”. Once we know the system T , that we are studying we can specify what

it means for one configuration to be reachable from another within that system. We let X �n
T Y

indicate that the configuration Y is exactly reachable from the configuration X by applying n

actions from the system T . That is, using actions from T the system can transform from X into

Y without any extra facts. X �∗
T Y means Y is exactly reachable from X by applying 0 or more

actions. We will later need to talk about configurations which are reachable using the actions

from all agents except for one. Thus we write X �∗
−Ai

Y to indicate that Y can be reached exactly

from X without using the actions of agent Ai, (the system T is implied). We also write X �1
t Y

to mean that an action labeled by t performs the transformation in one step. We may drop the

subscript T if the system is clear from the context.

Typically the agents will not care about the entire description of a goal configuration. It

will usually be sufficient for a configuration to contain certain facts. For example, in contract

negotiations the text of the contract is not known at the outset, but the goal is to have a signed

contract. For this reason the notion of a partial goal is better suited for this setting. For this

purpose we use the notation X  ∗
T Y to indicate that a configuration containing Y is reachable

from X by applying 0 or more actions from the system T . That is, there is some multiset of

facts U such that X �∗
T Y U . Similarly, we write X  ∗

−Ai
Y to indicate that this partial goal is

reachable without using the actions of Ai, and X  1
t Y to indicate that action t performs the

transformation in one step. In this thesis, all goals are partial goals, and reachability is interpreted

in this weaker sense unless otherwise stated.

Definition 2.1.2. A collaborative plan based on T which leads from an initial configuration W to

a partial goal configuration Z is a sequence of configurations X1;X2; . . . ;Xn such that X1 = W ,

Z ⊆ Xn and Xi �1
T Xi+1 for 1 ≤ i < n.

We also say that the configurations Xi are contained in the plan. We may also say that an
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action r is contained in the plan if r is the action that witnesses Xi �1
T Xi+1 for some i. In other

words, r is contained in the plan if Xi �1
r Xi+1 for Xi and Xi+1 contained in the plan. Notice

that to say there exists a collaborative plan leading from W to Z is the same as stating W  ∗
T Z.

Similarly, we say that W �∗
T Z means that there is a collaborative plan leading from W exactly

to Z. For this exact version of a plan, we simply require that Z = Xn instead of Z ⊆ Xn.

Let us return to our running example in which Alice wants to convey her passkey to Bob.

Recall, Alice has an action (labeled r1) that publishes her share of the passkey. We assume that

Bob has the following action that helps him recreate the passkey.

r2 : B1(B, 8, share), N(A, 7, share) →B B2(A, 15, pky)

Also let Charlie have the first-order action which reads information off the network.

r3 : N(x̄) →C C1(x̄)

We can now consider the system in which Alice, Bob and Charlie have actions r1, r2 and r3

respectively. That is T = (Σ, {A,B,C}, {r1, r2, r3}) for some appropriate signature Σ. It is clear

that applying r1 and r2 in that order demonstrates that

A1(A, 15, pky), A2(B, 8, share), B1(B, 8, share)  ∗
T B2(A, 15, pky)

In other words, there is a collaborative plan leading from the given initial configuration to the

goal Z = B2(A, 15, pky). Also, since N(A, 15, pky) can never appear we know that C1(A, 15, pky)

is unreachable from the initial configuration. That is, no reachable configuration contains the fact

C1(A, 15, pky). Thus, in this instance, Alice can successfully convey her passkey to Bob without

Charlie learning it.

2.1.4 Confidentiality Policies

Throughout a typical collaboration, some information must be revealed and other information

should be guarded. Also, the information which is shared is often only shared selectively with the
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agents who need it to successfully achieve the goals of collaboration.

In formalizing what it means for Alice’s secrets to leak, we first need to know where Alice

is willing to let her information flow. We will assume that each agent has a data confidentiality

policy which specifies which pieces of data other agents are prohibited from learning. In order to

motivate the definitions which follow, we consider a scenario from the medical field.

Scenario: Medical Test.

Consider a patient at a hospital who needs a medical test performed in order for her doctor to

provide a diagnosis and possibly prescribe appropriate medication. Such a task will involve not

only the patient and her doctor. It will also involve a nurse to draw the blood, a lab technician

to perform the test, and a receptionist at the front desk to take care of the paperwork. Although

there may be other agents typically involved in this task (such as an insurance company) we will

limit ourselves to these agents for simplicity. Our focus in this scenario is on which pieces of

information the patient is willing to share with the different agents, and in what combination.

In order for the test to be performed, the patient will request and schedule a test with the

receptionist. The receptionist anonymizes the patient by giving her an ID number. The patient

then goes to the nurse (with her ID number, not her name) to get a test sample taken. The nurse

sends the test sample to a lab where the test is performed and the result is determined. The

lab can then pass on the result to the doctor. We assume here that the doctor can recover the

patient’s name from the ID number. At this point the doctor can make a diagnosis and prescribe

the appropriate medication.

We assume the patient has some idea of which information should not be learned by each

of the agents. This information is specified in the patient’s data confidentiality policy, a partial

example of which can be found in Figure 2.2. For example, the receptionist has no need to learn

the patient’s name in combination with the test result. Similarly, the point of anonymizing the

patient is so that the nurse does not learn both the patient’s name and ID number together.
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Agent Critical Information

Receptionist (Name, Test Result), . . .

Nurse (Name, ID ]), . . .

Lab Technician (Name, Test Result), . . .

Doctor No Restrictions

Figure 2.2: Part of a patient’s data confidentiality policy.

Although the lab technician must learn the result of the test, she should not know who the result

pertains to. That is, she should not know both the name and the test result together, even though

she can learn both the ID number and test result. In this scenario we assume the patient has no

problem with the doctor learning any medical information.

The reader should not be concerned with the specifics of this scenario, but rather with the

expressivity of data policies. The patient’s policy is some way of indicating which configurations

she considers as a violation of her confidential information. Although we only listed part of the

patient’s policy in Figure 2.2, each agent may have a similar policy. Indeed, there may be some

external policy which is mandated by law.

Definition 2.1.3. The confidentiality policy of an agent is a set of partial configurations that the

agent views as undesirable or bad. A configuration is called critical for A if it contains one of the

partial configurations from A’s policy. A configuration is simply called critical if it is critical for

some agent.

Notice that since policies only specify which configurations must not occur, no conflict arises

when combining policies. The combination of two policies simply specifies the union of their

critical configurations.

When modeling real situations these policies serve as constraints in the model, which may not

represent real constraints in the actual system. For example a policy which is mandated by law will
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impose real restrictions on the system, while a patient’s policy may simply represent her personal

preferences. As they are currently defined, policies only refer to the location of information and

not to the manner in which it is transmitted. This may not be quite enough to capture real-world

policies. For instance, a nurse may have access to sensitive health information, but often only

the patient’s doctor is allowed to convey that information to the patient. Exploring alternative

definitions for policies may be a possible avenue for future research.

Notice that these policies can be very expressive. Returning once again to our running example,

Alice may not want Bob to know her current passkey, but she does not mind if he learns her old

passkey. Then her confidentiality policy may list the configuration A1(A, x, pky), B2(A, x, pky)

as critical. Notice that the variable x must be instantiated with the same constant. Thus a

configuration containing A1(A, 21, pky), B2(A, 15, pky) in which Bob’s knowledge of Alice’s passkey

is not current, will not be critical for Alice. In this way, if Alice replaces her old action r1 with

the following action

r′1 : A1(A, 15, pky), A2(B, 8, share) →A A1(A, 21, pky), A2(B, 8, share), N(A, 7, share)

in which she changes her passkey from 15 to 21 as she publishes her share of the old passkey, then

Bob will still be able to reconstruct B2(A, 15, pky) without violating Alice’s policy.

2.2 Well-Balanced Systems

In our running example from the previous section, Alice’s and Bob’s actions change the number

of facts in the configuration. That is, when Alice publishes her share of her passkey, she adds a

fact to the configuration. When Bob combines the two shares, he takes one fact away from the

configuration. Charlie’s action, on the other hand, replaces a public fact with a local fact. This

difference among the actions motivates the following definition.

Definition 2.2.1. A well-balanced action has the same number of facts in the pre-condition as

the post-condition, counting multiplicity. If an action is not well-balanced then it is un-balanced.
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Additionally, actions with at least as many facts in the pre-condition than in the post-condition

are called non-lengthening.

We then extend this definition to describe entire systems.

Definition 2.2.2. A system is called well-balanced if every action of the system is well-balanced.

Otherwise, the system is called un-balanced.

Well-balanced actions do not change the number of facts in the global configuration when they

are applied. Un-balanced actions either increase or decrease the number of facts in the global

configuration. For this reason, well-balanced systems are useful in modeling situations with a

fixed amount of total memory. Intuitively, this restriction forces each agent to have a buffer or

database of a fixed size before the collaboration. The agents may update values in this buffer and

erase values to leave empty slots, but they may not change the size of the buffer. Although using

only well-balanced actions forces us to fix the number of fields of this database, there is no a priori

bound on the number of fields we may choose.

In reality, restricting to well-balanced systems is more flexible than that. There is one global

buffer of a fixed size, and the agents are free to release some fields for use by the group and claim

others from the group. The model allows for a potential fight for space resources which could

result in a form of denial of service. Since we are considering situations in which the agents are

mostly cooperative and since our security focus is on the inappropriate release of information, we

do not explore this dynamic of well-balanced systems.

While at first well-balanced systems might seem very restrictive compared to general systems

which allow un-balanced actions, in practice we are still able to model most scenarios in a natural

way using well-balanced systems. It is possible to transform any un-balanced action into a well-

balanced one. Assume that our language has a special constant ∗. A predicate of the form N(∗)

can be interpreted as saying that the field N is empty. We can then take any un-balanced action

and “pad” the side that has fewer facts with instances of N(∗). For instance, if the pre-condition
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has fewer facts than the post-condition, we add instances of N(∗) until they have the same number

of facts.

Let us apply this construction to our secret sharing example to see how it works. Alice’s action

may be rewritten in the following well-balanced form.

r′′1 : A1(A, 15, pky), A2(B, 8, share), N(∗) →A A1(A, 15, pky), A2(B, 8, share), N(A, 7, share)

Thus, in order for the action to be enabled, there needs to be an empty slot on the network.

Similarly Bob’s action can be re-written as follows:

r′2 : B1(B, 8, share), N(A, 7, share) →B B2(A, 15, pky), N(∗)

We assume Charlie retains is well-balanced action r3.

Then if we take T ′ = (Σ, {A,B, C}, {r′′1 , r′2, r3}), the goal Z = B2(A, 15, pky) is no longer reach-

able from the initial configuration W = A1(A, 15, pky), A2(B, 8, share), B1(B, 8, share). This is

because the plan from W to Z contains a configuration with four facts, but the well-balanced sys-

tem T ′ can only create plans starting at W that have three facts in every configuration, because

the configuration size is fixed in advance. However, if we consider W ′ = W,N(∗) then by applying

r′′1 followed by r′2 we find that W ′  ∗
T ′ Z.

This is not a fluke. If Z is reachable from W in a general system, then we can always apply

the above construction to get a well-balanced system, and pad W with enough instances of N(∗)

to get W ′ so that Z is reachable from W ′ in the well-balanced system. That is the exactly what

the following proposition says.

Proposition 2.2.3. Let T be a general system, and let T ′ be the well-balanced system result-

ing from the above construction. If W  ∗
T Z, then there is a natural number k such that

W,N(∗)k  ∗
T ′ Z.

Proof. Let X1;X2; . . . ;Xn be the configurations of the plan in T which leads from W to Z. Thus

W = X1 and Z ⊆ Xn. Let pi be the number of facts in configuration Xi, and let m = max{pi}.

Finally let k = m− p1. We will show that W,N(∗)k  ∗
T ′ Z.
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To prove this we will use the sequence of actions in T ′ that correspond to the actions of T used

in the plan there. We show that this yields a sequence of configurations X ′
1;X

′
2; . . . ;X

′
n where

X ′
i = Xi, N(∗)m−pi for each 1 ≤ i ≤ n. This is true by construction for X ′

1.

Now assume it is true for X ′
i. If r : V → U is the action applied at Xi in the plan in T , then

we first show that we can apply the corresponding well-balanced action r′ at X ′
i to get X ′

i+1 which

satisfies the desired condition. There are two cases. The first case is when r′ is V → U,N(∗)`.

Then r and r′ have the same pre-conditions. The action r′ is enabled at X ′
i because Xi ⊆ X ′

i by

the inductive hypothesis. When we apply r′ to X ′
i, we get Xi+1, N(∗)m−pi+`. Because ` is the

number that makes r′ well-balanced, ` = pi − pi+1. Thus, X ′
i+1 = Xi+1, N(∗)m−pi+1 as desired.

The second case is when r′ is V,N(∗)` → U . Then for r′ to be enabled we must check that

` ≤ m − pi. This must be true because otherwise, the action r would add more than m − pi

facts to Xi making Xi+1 have more than m facts. This contradicts m being the maximum

number of facts in a configuration of the plan. Thus r′ is enabled at X ′
i and applying it we get

X ′
i+1 = Xi+1, N(∗)m−pi−`. We can easily check that ` = pi+1 − pi in this case, which means that

X ′
i+1 = Xi+1, N(∗)m−pi+1 as desired.

Therefore, in the well-balanced system T ′ we have found a plan from W,N(∗)k to X ′
n. But

Z ⊆ Xn ⊆ X ′
n and so we have shown that W,N(∗)k  ∗

T ′ Z.

2.3 Defining Policy Compliance

The agents’ confidentiality policies are simply sets of configurations which the agents want to

avoid. However, they may want to avoid them in a looser or stricter sense depending on the level

of trust the agents have amongst themselves. We therefore propose several ways to define policy

compliance. In this section we describe each of these interpretations and state the corresponding

computational problems.
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Definition 2.3.1 (System Compliance). A system in initial configuration W is called compliant if

the set of reachable configurations from W contains no configuration which is critical for any agent.

Compliant systems may be viewed as well-designed systems. Each agent has a guarantee that

the actions of the system do not allow their critical configurations to be reached, whether by the

malicious collusion of other agents or by the careless use of their own actions. A compliant system

dispenses with all confidentiality concerns before the collaboration even starts, and the agents

can then focus on the separate problem of finding a plan which leads to a goal configuration.

Notice, however, that system compliance depends on the initial configuration of the system. It is

possible for a system to be compliant in initial configuration W , and not be compliant in initial

configuration Ŵ . Let us consider the simplest example of how system compliance might fail.

Suppose agent A has a term t which should never appear in the public setting. Then A’s policy

will indicate that any configuration containing N(t) is critical since the predicate N is publicly

accessible. However, A might have the first-order action PA(x) →A N(x) which publishes any

value from the predicate PA. In this case, the system is definitely not compliant when starting

in an initial configuration which contains PA(t). Since A has the ability to publish t, she can

single-handedly create a configuration which is critical for her.

Thus system compliance is a very strong notion. It protects each agent not only from any

possible sequence of actions other agents can take, it also protects each agent from their own

actions. This interpretation is most appropriate when the agents share a very low level of trust.

For example, a company may ask employees or external collaborators to sign a non-disclosure

agreement. This effectively deletes a whole class of actions from the system, severely restricting

the reachability space. However, for many scenarios this interpretation of policies might be too

strong. For example, Alice may want to include the action PA(x) →A N(x) in order to publish

other pieces of information. For this reason it is useful to consider weaker definitions that can still

provide some level of protection. We consider two other notions: plan compliance and weak plan

compliance. We first introduce the weak version to motivate the stronger version.
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Definition 2.3.2 (Weak Plan Compliance). A plan is said to be weakly compliant if none of the

configurations contained in the plan are critical for any agent.

This definition may be appropriate for a set of agents who are mutually trusting. If a system

has a compliant plan leading to a goal then each agent knows two things. First, they know that

there is plan leading from the initial state to the goal. Secondly, they know that none of their

critical configurations will be reached as long as everybody follows the plan. This means that the

agents must trust each other to follow the plan because if they deviate from the plan, then all

guarantees of compliance are lost. To say that a system contains a weakly compliant plan leading

to a goal configuration is simply to say that goal reachability does not require any agent to pass

through one of their critical configurations.

This definition emphasizes the path that is taken to reach the goal. A policy is violated only

when a critical configuration is actually reached along the particular plan being considered. This

is a big difference from system compliance in which policies are violated as long as a critical

configuration is reachable. In other words, system compliance focuses on the reachable configura-

tions themselves. Weak plan compliance focuses on the particular way in which a configuration

is reached. We will emphasize this difference when considering the decidability and complexity

results. We can also state how system compliance and weak plan compliance are related.

Lemma 2.3.3. A system T in initial configuration W is compliant if and only if every plan in

the system which starts at W is weakly compliant.

Proof. The forward direction is immediate. If the system is compliant, then no critical configu-

ration is reachable from W . Therefore along any given plan in the system which starts at W , its

configurations will not be critical. For the reverse direction we show the contrapositive. Suppose

that W �∗
T Z where Z is critical. Then there is a plan in T from W which leads (exactly) to Z.

Since this plan ends in a critical configuration, it is not weakly compliant.
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A natural situation where weak plan compliance might be appropriate is when Alice uses a

credit card to pay for a meal at a restaurant. She certainly does not want the waiter to write down

her credit card number to use later, but there is no mechanism in place to prevent the waiter from

doing so. In this scenario Alice can pay for her meal without the waiter learning her card number,

but she must trust him not to write it down. A proper formalization of this system would not

be compliant according to Definition 2.3.1, since it would contain an action in which the waiter

copies the credit card number. However the system does have a weakly compliant plan which

allows Alice to pay for her meal, in which the waiter does not write down the card number.

In order for the notion of weak plan compliance to be appropriate the agents need to have a

level of trust that will not be present in more sensitive settings, so using the definition of weak

plan compliance may be too weak. For this reason we introduce our last definition of policy

compliance which provides an intermediate level of protection between system compliance and

weak plan compliance.

Definition 2.3.4 (Plan Compliance). A plan is said to be compliant if it is weakly compliant and

if for each agent Ai, and for each configuration Z contained in the plan, whenever Z �∗
−Ai

V , then

V is not critical for Ai.

A compliant plan gives each agent a stronger guarantee than a weakly compliant plan. Let

us consider this guarantee from the perspective of the single agent A. First, she knows that the

plan itself does not contain any configurations critical for her because it is also weakly compliant.

Secondly, she knows that starting from any configuration Z in the plan, all configurations which

are reachable from Z using only the other agents’ actions will also not be critical for her. These

guarantees hold for each agent.

Thus each agent knows that as long she follows the plan the other agents cannot collude to

create a configuration critical for her. The agents no longer have to trust one another. As soon as

one agent deviates from the plan, the other agents may choose to stop their participation. They
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can do so with the knowledge that the remaining agents will never create a configuration critical

for those agents that aborted.

Such a plan has the flavor of a Nash equilibrium in game theory. No agent has any incentive

to deviate from the given plan. If agent A does deviate, she only introduces the possibility that

the other agents can now collude to create a configuration critical for her, because the guarantee

of compliance only exists for the specified plan. Exploring the connection between Nash equilibria

and this current interpretation of policies is an interesting avenue of investigation, however, we

leave it for future research as it will likely involve some modifications of our formalism.

We give a similar connection between system compliance and plan compliance as we did be-

tween system compliance and weak plan compliance.

Lemma 2.3.5. A system T in initial configuration W is compliant if and only if every plan in T

starting from W is compliant.

Proof. In the forward direction, if the system is compliant then whenever W �∗
T V we know that

V is not critical. Now consider a plan starting from W . It is weakly compliant by Lemma 2.3.3.

Now let Z be a configuration of that plan. If Z �∗
−Ai

V we can conclude that W �∗
T V and thus V

is not critical. Since this is true for any agent Ai, the plan is compliant. For the other direction

we simply note that if every plan in T starting at W is compliant then every plan in T starting

at W is also weakly compliant. Thus by Lemma 2.3.3, the system is compliant.

These definitions differ somewhat from our original confidentiality condition found in [35]. We

used the following definition instead.

Definition 2.3.6. We say that a local state transition system in initial configuration W , protects

the privacy of agent A if every term t which, in the initial configuration W , occurs only in local

predicates of A, also occurs only in local predicates of A in any reachable configuration.

In fact, we can express this condition as a data confidentiality policy which is entirely deter-
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mined by the initial configuration. We use system compliance to determine whether this condition

is met. The critical configurations of this policy are those configurations which contain predicates

of the form PB(t, ū), where t is a term which is to be protected, B is an agent not equal to A,

and ū is an arbitrary (and possibly empty) tuple of terms. Similarly, configurations containing

P ′(t, ū) would be critical. In particular, this policy does not distinguish between other agents. We

assumed that agent A was unwilling to reveal any secret term t to any agent.

In the end we considered this condition to be too restrictive, so we generalized the notion

to data confidentiality policies which are much more flexible. This is also what caused us to

consider the weaker notions of plan compliance and weak plan compliance. Even somewhat liberal

policies may be too strong to satisfy system compliance. In Section 3.3 we discuss the effect these

changes had on our complexity results and show that Corollary 6.6 in [35] is actually a corollary

of Theorem 3.3.1 in this thesis.

2.4 The Computational Problems

Now that we have introduced all the relevant definitions we can state the computational problems

for which we would like to determine the computational complexity. They can each be considered

special cases of the following general problem.

The Collaborative Planning Problem with Confidentiality. Let T be a local state transi-

tion system with a finite set of actions T , in initial configuration W , with a finite set of goals G,

and a finite set of critical configurations C. Determine whether T has a plan leading from W to

one of the goals in G, which complies with all the agents’ confidentiality policies.

We can make two independent choices. First, we must choose which definition of policy

compliance we would like to use. Second, we choose whether or not to assume the system T
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is well-balanced. This yields six computational problems which we list below. We give each

problem a name which is provided in parentheses.

Problem 1 (Well-Balanced System Compliance). Let T be a well-balanced local state transition

system with a finite set of actions T , in initial configuration W , with a finite set of goals G, and a

finite set of critical configurations C. Determine whether the system T is compliant in configuration

W and if W  ∗
T Z for Z ∈ G.

Problem 2 (Well-Balanced Weak Plan Compliance). Let T be a well-balanced local state transition

system with a finite set of actions T , in initial configuration W , with a finite set of goals G, and

a finite set of critical configurations C. Determine whether the system T has a weakly compliant

plan leading from W to some Z ∈ G.

Problem 3 (Well-Balanced Plan Compliance). Let T be a well-balanced local state transition

system with a finite set of actions T , in initial configuration W , with a finite set of goals G, and

a finite set of critical configurations C. Determine whether the system T has a compliant plan

leading from W to some Z ∈ G.

Problem 4 (General System Compliance). Let T be a local state transition system with a finite

set of (possibly un-balanced) actions T , in initial configuration W , with a finite set of goals G,

and a finite set of critical configurations C. Determine whether the system T is compliant in

configuration W and if W  ∗
T Z for Z ∈ G.

Problem 5 (General Weak Plan Compliance). Let T be a local state transition system with a

finite set of (possibly un-balanced) actions T , in initial configuration W , with a finite set of goals

G, and a finite set of critical configurations C. Determine whether the system T has a weakly

compliant plan leading from W to some goal Z ∈ G.

Problem 6 (General Plan Compliance). Let T be a local state transition system with a finite set

of (possibly un-balanced) actions T , in initial configuration W , with a finite set of goals G, and
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a finite set of critical configurations C. Determine whether the system T has a compliant plan

leading from W to some goal Z ∈ G.
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Chapter 3

Complexity in Well-Balanced

Systems

In this chapter we determine exactly the complexity class of Well-Balanced System Compliance,

Well-Balanced Weak Plan Compliance, and Well-Balanced Plan Compliance. In Section 3.2 we

demonstrate a PSPACE lower bound for these problems. Section 3.3 demonstrates a PSPACE

upper bound for all three of these problems. Finally, in Section 3.4 we show that these problems

can all be solved in polynomial time if you fix a finite signature in advance. We begin, however,

by carefully describing how to represent the inputs to the problems. With only a few exceptions,

the results in this chapter can be found in [33]. We bring attention to those results that appear

for the first time in this thesis.

3.1 Representing the Input

In determining the complexity of a problem, one needs to understand how an instance of the

problem is represented. It is especially important for this chapter because the overall complexity

of our algorithms in Section 3.3 vary significantly depending on how we measure the size of the
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input parameters. Let us start by exploring why this is so.

Consider two hypothetical algorithms. The first algorithm assumes that the actions in the

system are represented by a direct binary encoding of the set of all propositional instances of the

actions, and it works in polynomial space, p(n). The second algorithm works directly with a binary

encoding of the first-order actions, and it also works in polynomial space, p(n) (where p is the same

polynomial). These algorithms actually have very different complexities when both are measured

with respect to the size of the set of first-order actions. The difference is hidden in the fact that

when a set of first-order actions is propositionalized, its size may increase exponentially. Thus if

the first-order representation has size n, then the corresponding propositional representation could

have size 2n. Viewed in this way, the first algorithm works in space p(2n) which is exponential

in n, not polynomial. Thus the second algorithm is more efficient than the first algorithm with

respect to the size of the first-order actions.

For this reason, the most efficient algorithms are those which are efficient for the most compact

representation of the inputs. Thus, instead of using a direct binary encoding of the propositional

instances of the actions, we assume we have some program, T , which recognizes the set of propo-

sitional actions of the system T . That is, we assume that T is a program satisfying T (r) = 1 if

r ∈ RT , and T (r) = 0 otherwise. We make no other assumptions about the program T , so in

particular, T could be the smallest such program. This amounts roughly to using the Kolmogorov

descriptive complexity of the set of actions [45].

We rely on same idea when representing the goal configurations and the critical configurations.

That is, we take the smallest program G such that G(Z) = 1 if Z contains a goal, and G(Z) = 0

otherwise. We also let C be the smallest program such that C(Z) = 1 if the configuration Z is

critical for some agent, and C(Z) = 0 otherwise. In order for our algorithms to run in PSPACE,

we must assume that each of these programs T ,G, and C runs in space which is polynomial in the

size of their inputs.

That brings us to the last input to our problems: the initial configuration W . For this input

32



we will use a direct binary encoding. The size of its description depends on two main factors. The

first is the number of facts (including multiplicity) that are present in a configuration. Since we

are in the well-balanced case, this will be a fixed number m for every configuration. The second

factor is the size of a description of a fact. If we let ST denote the number of facts expressible in

the finite signature Σ, then this will be on the order of log2(ST ). Thus a direct binary encoding of

a configuration can be done in O(m · log2(ST )) space, since each fact requires O(log2(ST )) space

and the configuration has m facts. Thus, both G and C work in space which is polynomial in

|W |, since they must actually look at a configuration to decide if it is a goal or if it is critical

respectively.

We can similarly represent each propositional instance of an action in O(2m · log2(ST )) space

since an applicable action is just a list of two configurations each requiring space O(m · log2(ST )).

Therefore T also works in space which is polynomial in |W |, since it must actually look at a

propositional action to decide whether it is part of the system or not.

Notice that the size of W depends on the signature Σ that we use. We therefore give an upper

bound for ST in terms of aspects of Σ. We also give an upper bound, LT (m) for the number of

configurations expressible in Σ with at most m facts. We use LT (m) because it has a nice formula

and as the following lemma shows, we can say that |W | = O(log2(LT (m))). Thus even though it

overestimates the number of configurations we must consider, it does not overestimate it by too

much. We omit the proof because it follows from some standard counting arguments, and from

established formulas for counting multisets.

Lemma 3.1.1. Given a local state transition system T over a finite signature Σ,

(i) let ST be the total number of facts in signature Σ, and

(ii) let LT (m) denote the total number of configurations in signature Σ whose number of facts

(counting repetitions) is bounded by m.

Then
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(a) ST ≤ (J ·Da), where:

(a1) J is the total number of predicate symbols in signature Σ,

(a2) a is an upper bound of their arity, and

(a3) D is the total number of constants in signature Σ.

(b) For any m:

LT (m) ≤

m + ST

m

 =
(m + ST )!
m! · (ST )!

≤ min{(ST + 1)m, (m + 1)ST }.

Before moving on the main theorems, we discuss a small point regarding our ability to produce

a plan if it exists. Although all six of our problems are stated as decision problems, in the well-

balanced case we prove more than just PSPACE decidability. Ideally we would also be able to

generate a plan in PSPACE when there is a solution. Unfortunately, the number of actions in

the plan may already be exponential in the size of the inputs, precluding PSPACE membership

of plan generation. For this reason we introduce the notion of “scheduling” a plan in which an

algorithm will also take an input i and output the i-th step of the plan.

Definition 3.1.2. An algorithm is said to schedule a plan if it

(i) finds a plan if one exists, and

(ii) on input i, if the plan contains at least i actions, then it outputs the i-th action of the plan

otherwise it outputs ⊥.

3.2 Lower PSPACE Bounds

We start with a reduction from the PSPACE-complete problem IN-PLACE ACCEPTANCE for

non-deterministic Turing machines [56].

Proposition 3.2.1. Any non-deterministic Turing machine M that accepts in space n can be

faithfully represented within well-balanced local state transition systems.
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Proof. Let M be a non-deterministic machine that accepts in space n.

Without loss of generality, we assume the following:

(a) M has only one tape, which is one-way infinite to the right. The leftmost cell (numbered by 0)

contains the marker $ unerased.

(b) Initially, an input string, say x1x2..xn, is written in cells 1, 2,..,n on the tape. In addition, a

special marker # is written in the (n+1)-th cell.

$ x1 x2 · · · xn # . . .

(c) The program of M contains no instruction that could erase either $ or #. There is no

instruction that could move the head of M either to the right when M scans symbol #, or to

the left when M scans symbol $. As a result, M acts in the space between the two unerased

markers.

(d) Finally, M has only one accepting state, and, moreover, all accepting configurations in space n

are of one and the same form.

For each n, we design a local state transition system Tn (with a single agent A) as follows. We

introduce the following 0-ary predicates (propositions), which are assumed to be local predicates

of A, and hence there is no need to annotate them with As identity:

(a) Ri,ξ stands for “the i-th cell contains symbol ξ”,

here i=0, 1, .., n+1, ξ is a symbol of the tape alphabet of M ,

(b) Sj,q means “the j-th cell is scanned by M in state q”,

here j =0, 1, .., n+1, q is a state of M .

Given an instantaneous description (configuration) of M in space n - that M scans j-th cell in

state q, when a string ξ0ξ1ξ2..ξi..ξnξn+1 is written left-justified on the otherwise blank tape, we

will represent it by a configuration of Tn of the form

Sj,qR0,ξ0R1,ξ1R2,ξ2 · · ·Rn,ξn
Rn+1,ξn+1 . (3.2.1)
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Necessarily, ξ0 = $, and ξn+1 = #.

Each of the instructions of M , qξ→q′ηD:

“if in state q looking at symbol ξ, replace it by η, move the tape head one cell in

direction D along the tape, and go into state q′”,

is specified by the set of n+2 actions of the form, i=0, 1, .., n+1 :

Si,qRi,ξ →A SiD,q′Ri,η, (3.2.2)

where iD := i+1 if D is right, and iD := i−1 if D is left, and iD := i, otherwise.

(Neither iright = n+2, nor ileft = −1 can occur.)

We denote the set of all these actions by RTn
.

Lemma 3.2.2. Given an input string x1x2..xn of length n, let Wn be a configuration of Tn of

the form (3.2.1), which represents the initial configuration of M with the input string x1x2..xn,

and let Zn be a configuration of Tn of the form (3.2.1), which represents the unique accepting

configuration of M of length n.

The following propositions are pairwise equivalent:

(a) The input string x1x2..xn is accepted by M .

(b) Wn �∗
Tn

Zn

(c) Wn  ∗
Tn

Zn

(d) There exists a finite plan based on Tn that (exactly) leads from Wn to Zn.

Proof. Our encoding proceeds in a straight course, so that given any successful non-deterministic

computation in space n that leads from the initial configuration represented by Wn to the accepting

configuration represented by Zn we can rewrite it as a sequence of actions from Tn leading from

Wn to Zn. This is done simply by writing (in order) the actions from Tn which correspond to the

transitions used in the successful computation. This shows that Wn�∗
Tn

Zn. Hence (a) implies (b).

Item (c) follows from (b) by the definitions, and we noted earlier that (d) and (b) are equivalent.
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The most complicated direction is that such a straightforward encoding is faithful. Suppose

that Wn  ∗
Tn

Zn. Then, for some V1 we have Wn �∗
Tn

ZnV1. That is, there is a finite plan P

based on Tn that exactly leads from Wn to ZnV1.

Since each of the actions (3.2.2) is well-balanced, and the number of facts in both Wn and Zn

is just the same n+3, this V1 must be empty, which means that Wn �∗
Tn

Zn, and so (c) implies (b).

On the other hand, because of the specific form of our actions (3.2.2) every configuration Xi in P

is of the form (3.2.1), and, hence, represents a configuration of M in space n.

We prove by induction that if M is ever in a configuration represented by Xi, for Xi in the

plan P, then M has a successful non-deterministic computation leading from that configuration

to the accepting configuration. The basis step of Xn = Z is trivial.

Induction Step:

Suppose M can lead to the accepting configuration whenever it finds itself in a configuration

represented by Xi for k < i ≤ n. Then we show it can lead to the accepting configuration from the

configuration represented by Xk. Our construction is such that if Xk �1
r Xk+1 then M can apply

the transition corresponding to r and transform from the configuration represented by Xk into

the configuration represented by Xk+1. Since, by the inductive hypothesis, M can successfully

finish when it starts in the configuration represented by Xk+1, then it can also successfully finish

when starting in the configuration represented by Xk. In particular, we can conclude that the

given input string x1x2..xn is accepted by M , and so (b) implies (a). This completes the proof of

Lemma 3.2.2. X

We now need to verify the efficiency of the reduction. In translating the Turing machine tran-

sitions into LSTS actions, we expand each transition into n + 2 actions. Thus we expand the

number of actions by a factor of n which is on the order of the size of the input string. The

input string to the Turing machine is represented by the initial configuration of the LSTS. Under
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appropriate binary encodings this will not expand the size by more than a fixed constant. Finally,

the representation of the goal configuration has size on the order of the initial configuration, so

both initial and goal configurations can have representations on the order of the input string of

the Turning machine. Thus, this translation can be performed in polynomial time with respect to

the size of the input to the IN-PLACE ACCEPTANCE problem.

Notice that the signature of Tn consists only of O(n) 0-ary predicate symbols. The number

of the constants invoked is zero. If we confine ourselves both to a fixed number of predicate

symbols and to a fixed number of constants, Theorem 3.2.1 fails because of the polytime algorithms

presented in Section 3.4. Nevertheless, the next proposition show that we get PSPACE-hardness

also at the opposite end of the “scale” with a fixed number of predicate symbols and O(n) constants.

Considering both ends of the spectrum allows us to pinpoint the cause of the PSPACE-hardness.

Proposition 3.2.3. Any non-deterministic Turing machine M that accepts in space n can be

faithfully represented in well-balanced local state transition systems with a fixed number of unary

predicates.

Proof. For each n, we will design a local state transition system T ′
n (with a single agent A) by

modifying the construction of Theorem 3.2.1 as follows.

Assume a list of constants:

c0, c1, c2, . . . , cn, cn+1.

We introduce the following unary predicate symbols, which are assumed to be private predicates

of A:

(a) R̂ξ, for every ξ from the tape alphabet of M .

The intended meaning of R̂ξ is:

R̂ξ(ci) = Ri,ξ.
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(b) Ŝq, for every q from the set of states of M .

The intended meaning of Ŝq is:

Ŝq(cj) = Sj,q.

Given an instantaneous description (configuration) of M in space n - that M scans j-th cell in

state q, when a string ξ0ξ1ξ2..ξi..ξnξn+1 is written left-justified on the otherwise blank tape, now

it is represented as (cf. (3.2.1)):

Ŝq(cj)R̂ξ0(c0)R̂ξ1(c1) · · · R̂ξn
(cn)R̂ξn+1(cn+1). (3.2.3)

Each of the actions of the form (3.2.2) is rewritten as:

Ŝq(ci)R̂ξ(ci) →A Ŝq′(ciD
)R̂η(ci). (3.2.4)

The faithfulness of the modified encoding is established by

Lemma 3.2.4. Given an input string x1x2..xn of length n, let Wn be a configuration of T ′
n of the

form (3.2.3) that represents the initial configuration of M with the input string x1x2..xn, and let

Zn be a configuration of T ′
n of the form (3.2.3) that represents the unique accepting configuration

of M of length n.

The following propositions are pairwise equivalent:

(a) The input string x1x2..xn is accepted by M .

(b) Wn �∗
T ′

n
Zn

(c) Wn  ∗
T ′

n
Zn

(d) There exists a finite plan based on T ′
n that (exactly) leads from Wn to Zn.

Proof. The proof mimics exactly the proof of Lemma 3.2.2.
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Theorems 3.2.1 and 3.2.3 say that as long as either the number of predicate symbols or the

number of constants in the signature is not bounded in advance, then goal reachability is PSPACE-

hard. As the next result shows, this implies the PSPACE-hardness of all three versions of the

collaborative planning problem with compliance to a confidentiality policy.

Theorem 3.2.5. The problems of Well-Balanced System Compliance, Well-Balanced Weak Plan

Compliance, and Well-Balanced Plan Compliance are all PSPACE-hard.

Proof. The embeddings given in the proofs of Theorems 3.2.1 and 3.2.3 are into systems with a

single agent whose confidentiality policy does not view any configuration as being critical. Thus

the hardness is already achieved in the single-agent case where policy compliance is vacuously true

for each of the three definitions.

3.3 Upper PSPACE Bounds

We are now ready to demonstrate algorithms for the three versions of the collaborative planning

problem with confidentiality. The following theorem says that the problem of determining system

compliance and scheduling a plan is in PSPACE.

Theorem 3.3.1 (Well-Balanced System Compliance). There is an algorithm which takes as in-

puts: an initial configuration W , programs T ,G, and C as described in Section 3.1, and a natural

number 0 < i ≤ LT (m), which behaves as follows:

(a) If the system is compliant, and if W  ∗
T Z where G(Z) = 1, then it outputs ”yes” and

schedules the plan, otherwise it outputs ”no”.

(b) It runs in polynomial space with respect to |T |, |W |, |G| and |C|.

Proof. The proof will rely on several critical facts about PSPACE. Namely, we rely on the equiv-

alence of PSPACE, NPSPACE and COPSPACE [56].
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Policy Compliance:

The algorithm first checks that none of the critical configurations are reachable from W . That

is, we must check that every reachable configuration Z satisfies C(Z) = 0. To do this, we give a

nondeterministic algorithm which accepts exactly when a critical configuration is reachable. We

then apply Savitch’s Theorem to determinize the algorithm. Finally, we swap the accept and reject

conditions to get a deterministic algorithm which accepts exactly when all critical configurations

are unreachable.

We begin with W0 := W . For any t ≥ 0, we first check if C(Wt) = 1. If so, then we return

“yes”. Otherwise we proceed to guess an action r : XAXpub →A YAYpub such that T (r) = 1

and such that r is enabled in configuration Wt. If no such action exists we return “no”. If such

an action does exist then we let Wt+1 be the configuration which results from applying action

r to configuration Wt, and we replace Wt by Wt+1. A critical configuration is reachable if and

only if there is a sequence of at most LT (m) guesses that ends in a critical configuration. This is

because if a plan loops back to a previously visited configuration and then proceeds to a critical

configuration, then it could have avoided the loop the first time around. Thus, at worst, a plan

must visit each of the LT (m) configurations.1 This means we should stop guessing actions and

return “no” after having already guessed LT (m) of them.

It is clear that if a critical configuration is reachable from W then there is a sequence of guesses

which will result in the algorithm returning “yes”. Otherwise the algorithm will always return

“no”. Thus the algorithm correctly decides the reachability of critical configurations. It only

remains to show that this algorithm uses space which is polynomial in |T |, |W |, and |C|.

Let us now determine the space required for each t-th step. We need to record the config-

uration Wt. Since the configuration size never grows, it follows that |Wt| = O(|W |) for any

configuration Wt. Program C can verify C(Wt) = 1 in space polynomial in |Wt| by the assumption

about the program C. Our algorithm will need to keep track of C’s functioning which can be done
1This is actually an overestimate as we have already seen above.
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in space which is polynomial in |C|. We then need to record the action r which is guessed. In

the worst case an action r will have m facts in both the pre- and post-conditions. This amounts

to representing two complete configurations which can be done in O(|W |) space. Program T can

verify T (r) = 1 in space which is polynomial in |r|. Since |r| = O(|W |) this verification can

be done in space polynomial in |W |. Our algorithm will need to keep track of T ’s functioning

which can be done in space which is polynomial in |T |. In replacing Wt by Wt+1 we may have

to record two configurations at once, but we never record more than two. Finally, we should

keep track of how many actions we have guessed so far. Since the algorithm stops after guessing

LT (m) actions, this can be maintained on log2(LT (m)) space. By Lemma 3.1.1, this is less than

m · log2(ST + 1) which we already saw is O(|W |). Since the space at each step is polynomial

in |T |, |W | and |C|, the total space is also polynomial in those parameters. Thus the problem

is found to be in NPSPACE. As stated above, we can determinize this algorithm and swap the

accept and reject conditions to obtain the algorithm we are looking for, which remains in PSPACE.

Scheduling the Plan:

We now have to give an algorithm to schedule a plan if it exists, and show this algorithm is

also in PSPACE. This is easily done by adapting the algorithm given above. We can replace every

occurrence of C with G, and we get a (nondeterministic) algorithm which decides the existence of

a plan leading from W to one of the goals Z1, . . . , Zk. In order for the algorithm to schedule a

plan (and not just decide the existence of a plan) the algorithm will remember the guess for the

i-th action. This only adds O(|W |) space to the complexity. Thus this algorithm will run in space

which is polynomial in |T |, |W | and |G|. This time we only need to determinize the algorithm to

conclude that it is in PSPACE.

Combining the Algorithms:

Finally, we note that we can combine these two algorithms in sequence to get the correct
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behavior. If either the first or the second parts fail, then we output “no”. Otherwise we output

“yes” along with the i-th action of the plan. This combined algorithm will run in space which is

polynomial in |T |, |W |, |G| and |C|.

The previous theorem combines with Theorem 3.2.5 to imply that the collaborative planning

problem with system compliance is PSPACE-complete. Due to the use of data confidentiality

policies, this is actually a generalization of our PSPACE result in [35]. The following corollary

is the formal statement of this fact. (We modify the bound on k, the number of partial goals in

order to keep the input itself within the size bound.)

Corollary 3.3.2. There is an algorithm applicable to the following inputs: an initial configuration

W , a program T as described in Section 3.1, and a list Z1, . . . , Zk of partial goal configurations

for k = O(poly(|W |)), which behaves as follows:

(a) If the system preserves the privacy of all agents according to Definition 2.3.6, and if W  ∗
T Zi

for some Zi, outputs “yes”, otherwise it outputs “no”.

(b) It runs in polynomial space with respect to |T |, and |W | (which is O(m · log2(ST ))).

Proof. The algorithm is essentially the same as in the previous proof. The key difference is that

there is no policy which is input to the problem. Instead, the policy is implicitly encoded in the

initial configuration. We can replace the program C with a process that looks at each term in the

current configuration and determines if it is one of the terms that should be protected according to

Definition 2.3.6. It then determines if the current occurrence of the term violates Definition 2.3.6

by looking at who owns the predicate in which it appears. This is easily done in space which is

polynomial in the size of a configuration (i.e. in |W |).

Notice also that the complexity is no longer with respect to |G|, since we input an explicit

encoding of the partial goals Z1, . . . , Zk. Essentially, we replace G with this list. At each step

we can check the current configuration against those partial goals on the list in space which is
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polynomial in |W |. Assuming k = O(poly(|W |)) is a special case of assuming |G| = O(poly(|W |)),

which allows us to put the polynomial complexity only in terms of |W |.

Intuitively, the corollary follows because the policy can be extracted from the initial configu-

ration in polynomial space, and because we restrict the explicit representation of the partial goals

as a list to be small. By using data confidentiality policies we gain a great deal of expressiveness

at the small cost of an extra input parameter. Similarly, by considering more possibilities for the

partial goal configurations we must pay a small cost. The corollary is just a special case in which

|G| and |C| are essentially restricted to be polynomial in |W |. Thus these extra parameters only

come into play when their size greatly exceeds that of |W |.

The next theorem states that the problem of scheduling a weakly compliant plan is also in

PSPACE.

Theorem 3.3.3 (Well-Balanced Weak Plan Compliance). There is an algorithm applicable to the

following inputs: an initial configuration W , programs T ,G, and C as described in Section 3.1,

and a natural number 0 < i ≤ LT (m), which behaves as follows:

(a) If there is a weakly compliant plan leading from W to Z where G(Z) = 1, then it outputs “yes”

and schedules the plan, otherwise it outputs “no”.

(b) It runs in polynomial space with respect to |T |, |W |, |G| and |C|.

Proof. We can adapt the proof of Theorem 3.3.1 for our situation here. At each step, the nonde-

terministic algorithm first checks if C(Wt) = 1. If so, then the algorithm outputs “no”. Otherwise

it checks if G(Wt) = 1. If so, then it outputs “yes”. If not, then it guesses an action r in order to

generate the next configuration Wt+1. In this way, we only continue along a path if it avoids the

critical configurations. It is clear that if there is a weakly compliant plan then there is a sequence

of guesses which will conclude with the algorithm outputting “yes”. Otherwise the algorithm will

always return “no”. Thus the algorithm correctly decides the existence of a weakly compliant
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plan. As we did above, we can remember the i-th action using space which is O(|W |). Since

we can store each configuration and action in PSPACE as well as perform the necessary checks

in PSPACE, we again find that the entire procedure runs in PSPACE with respect to the size

of the inputs. Finally, we determinize the algorithm according to the proof of Savitch’s Theorem.

This theorem combines with Theorem 3.2.5 to imply that the collaborative planning problem

with weak plan compliance is PSPACE-complete.

Our next result gives an algorithm to find a compliant plan in PSPACE if such a plan exists.

This result appears for the first time in this thesis. Due to the nature of the definition of plan

compliance, it is not enough for our program T to recognize actions of the system. It must also

recognize who it belongs to. That way from any Z along the plan it can find every V such that

Z �∗
−Ai

V . Thus we will assume that T (i, r) = 1 if r is an instance of one of the actions of agent

Ai, and T (i, r) = 0 otherwise. Similarly, we assume C(i, Z) = 1 if configuration Z is critical

for agent Ai and C(i, Z) = 0 otherwise. For reasonable systems, the number of facts m in the

initial configuration W is much larger than the number n of agents. Thus we can assume that T

and C both still work in space which is polynomial in |W |. We assume G is just as described in

Section 3.1.

Theorem 3.3.4 (Well-Balanced Plan Compliance). There is an algorithm applicable to the fol-

lowing inputs: an initial configuration W , programs T ,G, and C as described directly above, and

a natural number 0 < i ≤ LT (m), which behaves as follows:

(a) If there is a compliant plan leading from W to Z where G(Z) = 1, then it outputs “yes” and

schedules the plan, otherwise it outputs “no”.

(b) It runs in polynomial space with respect to |T |, |W |, |G| and |C|.

Proof. We present another nondeterministic algorithm that works in a way very similar to the

algorithm in the proof of the previous theorem. The strategy is to describe a main procedure P
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which guesses actions of a plan leading to the goal. At each configuration Z along the way, P

will call sub-procedures Pi that determine if there is a configuration V such that Z �∗
−Ai

V and

C(i, V ) = 1.

Sub-Procedures:

We again rely on the fact that NPSPACE, PSPACE, and COPSPACE are all the same complex-

ity class. We begin with nondeterministic procedures P ′
i for each agent Ai. Each sub-procedure P ′

i

begins in some configuration Z0 = Z. For each 0 ≤ t ≤ LT (m) it checks first if C(i, Zt) = 1. If so,

it returns “yes”. Otherwise, it guesses an action r and an agent Aj 6= Ai such that T (j, r) = 1 and

such that r is enabled in configuration Zt. If no such action exists, then return “no”. Otherwise,

apply it applies r to Zt to obtain Zt+1, and replaces Zt by Zt+1 and repeats. After guessing LT (m)

actions, if it has not yet returned anything, it returns “no”. We can then reverse the accept and

reject conditions and use Savitch’s Theorem to get a deterministic procedure Pi which returns

“yes” if every V satisfying Z �∗
−Ai

V also satisfies C(i, V ) = 0, and returns “no” otherwise.

Main Procedure:

The main procedure P ′ begins at W0 = W , the initial configuration. For each 0 ≤ t ≤ LT (m)

P ′ calls each of the sub-procedures Pi(Wt). If any of them returns “no”, then P ′ returns “no”.

Otherwise, it checks if G(Wt) = 1. If so, then it returns “yes”. If not, it guesses an action r such

that T (i, r) = 1 for some agent Ai and such that r is enabled in Wt. If no such action exists, P ′

returns “no”. Otherwise, it applies r to Wt to obtain Wt+1 and it replaces Wt with Wt+1 and

repeats. After guessing LT (m) actions, if it has not yet returned anything, it returns “no”. We

can use Savitch’s Theorem to get a deterministic procedure P which outputs “yes” if there is a

compliant plan leading from W to some goal configuration, and “no” otherwise. Again, we can

have P record the i− th action in order to schedule the plan.
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Let us analyze the space used in this algorithm. Let’s start with the sub-procedures. Just as

in the previous theorems, they only remember two configurations at a time plus a counter to know

when it has looked at LT (m) of them. This requires linear space in |W |. Checking if T (j, r) = 1

can be done in space polynomial in |T |, |j| and |r|. We have already seen that |r| is polynomial

in |W |. Since the number of agents n is much less than m, we can record each agent j in space

log2(n) which is within O(|W |). Similarly, C(i, V ) can be evaluated in space polynomial in |W |.

Thus each sub-procedure works in space polynomial in |W |, |T |, and |C|.

The main procedure also only remembers at most three configurations at one time. Since

it calls each sub-procedure Pi in sequence, those calls can be done in polynomial space, as just

described above. Again, the extra calls to T and G can be done in polynomial space in |T |, |G|

and the size of their inputs which is O(|W |). Finally, it can use log2LT (m) = O(|W |) space to

count up to the maximum LT (m) actions before deciding the plan is too long. Adding this all up,

the whole procedure remains in polynomial space with respect to the input parameters.

This theorem combines with Theorem 3.2.5 to imply that the collaborative planning problem

with plan compliance is PSPACE-complete.

3.4 Polynomial Time Algorithms

We end this chapter by considering the complexity of the planning problems with confidentiality

under one further restriction. Instead of viewing the signature Σ of the transition system as an

input to the problem, we fix it in advance. This may be a reasonable thing to consider if the

agents involved participate in distinct yet related collaborations on a periodic basis. For example,

a group of companies may wish to perform quarterly collaborative forecasting. The language of

the problem can be viewed as a fixed aspect of the system instead of an input parameter. Under

this assumption we show that both versions of the collaborative planning problem are solvable
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in polynomial time with respect to the size of their input. Although the time complexity of the

problems is exponential, the following theorems also serve to isolate the source of the exponential

complexity namely, the number of facts expressible by the signature.

The algorithms will work the same as the algorithms in the previous section. Thus in order

for them to work in polynomial time, the programs T ,G, and C must also work in polynomial

time. In practice, the programs we used in the previous section were already likely to work in

polynomial time, so this is not a very strong restriction.

Theorem 3.4.1 (Well-Balanced System Compliance). Let Σ be a fixed finite signature (consisting

of a finite number of predicate symbols with their arity and of a finite number of constants). Then

there is an algorithm applicable to the following inputs: an initial configuration W , and programs

T ,G, and C as described in Section 3.1 that work in polynomial time, which behaves as follows:

(a) If the system is compliant, and if W  ∗
T Z such that G(Z) = 1, then it outputs the plan,

otherwise it outputs “no”.

(b) It runs in polynomial time with respect to |T |, |W |, |G|, and |C|.

Proof. The crucial fact to keep in mind throughout this proof is that the total number of

configurations is LT (m) ≤ (m + 1)ST . Since we have fixed a signature in advance, ST is viewed

as a constant. Thus LT (m) is polynomial in m. Similarly, |W | = O(m · log2(ST )) = O(m), so we

find that LT (m) is polynomial in |W |.

The algorithm works the same as the determinized algorithm in the proof of Theorem 3.3.1,

except that it records all the configurations of the plan if there is one. The size of the reachability

tree is polynomial in LT (m). Thus the number of steps is polynomial in |W |. Since we assume

that each of T , G and C run in polynomial time (with respect to |W |), the whole algorithm now

runs in polynomial time with respect to the size of the four input parameters.
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Theorem 3.4.2 (Well-Balanced Weak Plan Compliance). Let Σ be a fixed finite signature (con-

sisting of a finite number of predicate symbols with their arity and of a finite number of constants).

Then there is an algorithm applicable to the following inputs: an initial configuration W , and pro-

grams T ,G, and C as described in Section 3.1 that work in polynomial time, which behaves as

follows:

(a) If there is a weakly compliant plan leading from W to some Z such that G(Z) = 1 then it

outputs the plan, otherwise it outputs “no”.

(b) It runs in polynomial time with respect to |T |, |W |, |G|, and |C|.

Proof: This algorithm works the same as the determinized algorithm in the proof of Theo-

rem 3.3.3, except that it records all the configurations of the plan if there is one. Since the

reachability tree is polynomial in LT (m) which is polynomial in |W |, we can conclude that the

whole algorithm runs in polynomial time with respect to the size of the four input parameters.

While the previous two theorems appear in [33], the corresponding theorem for Well-Balanced

Plan Compliance appears here for the first time.

Theorem 3.4.3 (Well-Balanced Plan Compliance). Let Σ be a fixed finite signature (consisting

of a finite number of predicate symbols with their arity and of a finite number of constants). Then

there is an algorithm applicable to the following inputs: an initial configuration W , and programs

T ,G, and C as described in Section 3.1 that work in polynomial time, which behaves as follows:

(a) If there is a compliant plan leading from W to some Z such that G(Z) = 1 then it outputs the

plan, otherwise it outputs “no”.

(b) It runs in polynomial time with respect to |T |, |W |, |G|, and |C|.

Proof. This algorithm works the same as the determinized algorithm in the proof of Theo-

rem 3.3.4, except that it records all the configurations of the plan if there is one. Since the
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total reachability tree from any configuration is polynomial in LT (m) which is polynomial in

|W |, so is the reachability tree when we disallow actions from agent Ai in determining whether

C(i, V ) for all V such that Z �∗
−Ai

V . Thus each sub-procedure can be performed in time poly-

nomial in |W |, |T |, an |C|. Thus, each step of the main procedure can be completed in time

n·poly(|W |, |T |, |C|) + poly(|G|). Since n < m we know that n = O(|W |). Thus each step can

be performed in polynomial time in the size of the inputs. Since the reachability tree has size

polynomial in LT (m), this complexity grows at most polynomially, making the whole procedure

run in polynomial time.
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Chapter 4

Complexity of General Systems

In this chapter, we consider how the complexity and indeed even the decidability of the different

versions of the collaborative planning problem with confidentiality are affected when we do not

assume our systems are well-balanced. Section 4.1 proves that the version for system compliance

is EXPSPACE-complete. In Section 4.2 we show that both versions of plan compliance cause the

problem to be undecidable. The contents of this chapter appear in [34].

4.1 System Compliance

In this section we demonstrate that General System Compliance is EXPSPACE-complete. The

main step on the way to proving this is to show that the coverability problem for Petri nets is

equivalent to the reachability problem for LSTSs. In order to prove this we rely on reductions in

both directions between the coverability problem for Petri nets, and the reachability problem for

LSTSs. The coverability problem was shown to be EXPSPACE-hard by Lipton [48], and shown

to have an exponential space algorithm by Rackoff [58]. Both of these results are actually about

vector addition systems [43], but vector addition systems have been shown to be computationally

equivalent to Petri nets [30, 69].
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This equivalence arises in the general case in which actions are not necessarily well-balanced.

In order to make the correspondence in the well-balanced case, we would need to identify the ap-

propriate boundedness restriction on Petri nets. Searching through the literature, it appears that

Petri nets which are 1-conservative correspond most closely to well-balanced LSTSs. Our search

through the literature revealed that Petri net reachability is PSPACE-complete for 1-conservative

nets. We did not run across the corresponding complexity result for the coverability problem,

although we do not want to claim that no such result has been published. Since we did not

thoroughly investigate the connection between well-balanced LSTSs and certain restricted Petri

nets, we did not perform a complete examination of all the relevant Petri net literature. The

possibility of connections between certain restricted Petri nets and certain restricted LSTSs could

be fruitful for both formalisms. However, going forward we will only consider the correspondence

in the general case.

In order to demonstrate the correspondence we must review some definitions from Petri nets.

A number of equivalent definitions exist but we use the ones found in [69].

Petri Nets. A Petri net is a tuple N = (P, T, φ) where P is a finite set of places, P =

{p1, . . . , pk}, T is a finite set of transitions, T = {t1, . . . , ts}, and φ is a flow function φ :

(P × T ) ∪ (T × P ) → N. A marking µ of the Petri net is a function µ : P → N which as-

signs some number of tokens to each place. For two markings µ, µ′ we write µ ≥ µ′ whenever

µ(p) ≥ µ′(p) for all p ∈ P .

A transition t is enabled at µ if and only if for all p ∈ P , φ(p, t) ≤ µ(p). When t is enabled

then it may fire by removing φ(p, t) tokens from each place p and by adding φ(t, p) tokens to

each place p. We then write µ
t→ µ′ where µ′(p) = µ(p)− φ(p, t) + φ(t, p) for all p ∈ P . (This

notation also implies that t is enabled at µ.) Thus the set {φ(p, t) | p ∈ P} act like pre-conditions

for the transition t and the set {φ(t, p) | p ∈ P} act like post-conditions for the transition t. A

firing sequence σ = t1 . . . tn is enabled at µ0 if and only if µ0
t1→ µ1

t2→ · · · tn→ µn, for some markings
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µ1, . . . , µn. In that case we write µ0
σ→ µn.

A marking µ is reachable from µ0 if ∃σ ∈ T ∗ such that µ0
σ→ µ. The reachability set of a mark-

ing µ0 is R(N,µ0) = {µ | ∃σ ∈ T ∗, µ0
σ→ µ}. The marking µ is coverable from µ0 if ∃µ′ ∈ R(N,µ0)

such that µ′ ≥ µ. The coverability set of µ0 is C(N,µ0) = {µ | ∃µ′ ∈ R(N,µ0), µ′ ≥ µ}. The cov-

erability problem for Petri nets is the following. Given a Petri net N and two markings µ0, µ1,

decide if µ1 ∈ C(N,µ0).

In order to show the equivalence of the coverability problem for Petri nets and the reachability

problem for LSTSs, we must demonstrate reductions both ways between Petri nets and LSTSs.

The details follow, but in order to help the reader see the big picture we give a high-level overview

of how the reductions work. Intuitively, places of the Petri net correspond to facts of the LSTS.

Petri net markings µ correspond to LSTS configurations µ̂. Petri net transitions ti correspond to

LSTS actions t̂i in such a way that if markings µ and µ′ correspond to configurations µ̂ and µ̂′

respectively, then µ
ti→ µ′ if and only if µ̂ �1

t̂i
µ̂′.

The reason that LSTS reachability corresponds to coverability instead of Petri net reachability

is that we focus on partial goals. In other words, our use of reachability according to  ∗
T allows

the goal configuration to contain extra facts as long as it contains at least those facts represented

by the goal. Similarly, Petri net coverability allows the final marking to have more tokens in any

given place, as long as each place contains a certain minimum number. This distinction between

Petri net reachability and coverability is crucial to our complexity result because although Petri

net reachability has been shown to be decidable [50], the most reasonable upper bound on the

complexity is primitive recursive in the Ackermann function. Thus, EXPSPACE membership

relies crucially on our use of partial goals instead of exact goals.

In the presentation that follows we use notation for LSTSs that is similar to notation from

Petri nets in order to highlight the correspondence more clearly.
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4.1.1 Reduction from Petri nets to LSTSs

Let N = (P, T, φ) be a Petri net. We will associate a LSTS TN to this Petri net. For each place

pi we will include a propositional constant (0-ary predicate) Fi in the signature of TN . For any

marking µ of N we associate the configuration

µ̂ = F
µ(p1)
1 , . . . , F

µ(pk)
k .

For each transition ti we include the (propositional) action

t̂i = F
φ(p1,ti)
1 , . . . , F

φ(pk,ti)
k → F

φ(ti,p1)
1 , . . . , F

φ(ti,pk)
k .

This action is enabled in a configuration µ̂ iff µ̂(pj) ≥ φ(pj , ti) for all 1 ≤ j ≤ k iff ti is enabled in

µ. Thus the result of applying this action to the configuration µ̂ is

µ̂′ = F
µ(p1)−φ(p1,ti)+φ(ti,p1)
1 , . . . , F

µ(pk)−φ(pk,ti)+φ(ti,pk)
k

where µ
ti→ µ′.

Note that TN has finitely many propositional actions. Notice also that the size of the LSTS

reachability problem (as measured by the total length of the binary descriptions of the actions, and

the initial and final configurations) is of the same order as the size of the Petri net coverability

problem (measured by the total length of the binary descriptions of the flow function and the

initial and final markings). Under appropriate binary encodings this translation can be performed

in polynomial time.

Proposition 1. Under the above translation, if µ1 ∈ C(N,µ0) then µ̂0  ∗
TN

µ̂1.

Proof. The proof is by induction on the length of the firing sequence σ which satisfies µ0
σ→ µ

such that µ ≥ µ1. The basis case of length 0 is trivial.

Induction Step:

Suppose that if µ is coverable from µ0 via a firing sequence of length n then µ̂0  ∗
TN

µ̂.

Suppose also that µ1 is coverable from µ0 via a firing sequence of length n + 1. Then there are
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markings µ, µ′ such that µ0
σ→ µ

ti→ µ′ where σ is a firing sequence of length n and µ′ ≥ µ1. By the

inductive hypothesis, µ̂0  ∗
TN

µ̂. It is easy to check that since µ
ti→ µ′, we also get that µ̂ �1

ti
µ̂′.

Also since µ′ ≥ µ1 we know that µ̂′ contains µ̂1. Thus, µ̂ ∗
TN

µ̂1. It is easily seen that  ∗
TN

is a

transitive relation, thus µ̂0  ∗
TN

µ̂1 as desired.

Proposition 2. Under the above translation, if µ̂0  ∗
TN

µ̂1 then µ1 ∈ C(N,µ0).

Proof. The proof is by induction on the length of the sequence of actions which witnesses

µ̂0  ∗
TN

µ̂1. The basis case of a length 0 sequence is trivial.

Induction Step:

Suppose that if µ̂0  n
TN

µ̂ then µ ∈ C(N,µ0). Suppose also that µ̂0  
n+1
TN

µ̂1. Then there

is a configuration µ̂ such that µ̂0  n
TN

µ̂  1
t̂i

µ̂1. By the inductive hypothesis we know that

µ ∈ C(N,µ0). Also, by definition, there is a configuration µ̂′ such that µ̂ �1
t̂i

µ̂′ and µ̂′ contains

µ̂1. It is easy to check that µ
ti→ µ′ and µ′ ≥ µ1. Thus µ1 ∈ C(N,µ). It is not too difficult to see

that coverability is transitive and so µ1 ∈ C(N,µ0) as desired.

Because this reduction is efficient and since Lipton showed an EXPSPACE lower bound for

Petri net coverability [48], we can conclude that the LSTS reachability problem is EXPSPACE-

hard.

4.1.2 Reduction from LSTSs to Petri Nets

Suppose we are given a LSTS T with finitely many propositional actions, and two configurations

µ0 and µ1. Then there are only finitely many facts which can appear in any plan: those facts in

the configurations µ0 and µ1 and those facts mentioned in one of the actions. Suppose there are

k facts total, and for convenience let us rename them F1, . . . , Fk. Then we will associate to this

LSTS a Petri net NT = (P̂ , T̂ , φ) with places P̂ = {p1, . . . , pk}. Any configuration of the form

µ = Fµ1

1 , . . . , Fµk

k
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corresponds to a marking of the Petri net µ̂ such that µ̂(pi) = µi for 1 ≤ i ≤ k.

If T has actions {t1, . . . , ts} then the Petri net NT will have transitions T̂ = {t̂1, . . . , t̂s}. If

the action ti is

ti : F
t−i,1
1 , . . . , F

t−i,k

k → F
t+i,1
1 , . . . , F

t+i,k

k

where t−i,j , t
+
i,j ∈ N for all 1 ≤ j ≤ k, then φ satisfies

φ(pj , t̂i) = t−i,j and φ(t̂i, pj) = t+i,j for all 1 ≤ j ≤ k.

Then action ti is enabled in configuration µ if and only if t−i,j ≤ µj for all 1 ≤ j ≤ k if and only if

transition t̂i is enabled in marking µ̂. Note also that µ �1
ti

µ′ iff µ̂
t̂i→ µ̂′.

Notice that the size of the Petri net coverability problem is of the same order as the size of

the LSTS reachability problem. Under an appropriate binary encoding the translation can be

performed in polynomial time.

Proposition 3. Under the above translation, if µ0  ∗
T µ1 then µ̂1 ∈ C(NT , µ̂0).

Proof. The proof is by induction on the length of the sequence of actions witnessing µ0  ∗
T µ1.

The basis case of a length 0 sequence is trivial.

Induction Step:

Suppose that if µ0  n
T µ then µ̂ ∈ C(NT , µ̂0). Suppose also that µ0  

n+1
T µ1. Then there is a

configuration µ such that µ0  n
T µ 1

ti
µ1. By the inductive hypothesis µ̂ ∈ C(NT , µ̂0). Also, by

definition, there is a configuration µ′ such that µ �1
ti

µ′ where µ′ contains µ1. It is easy to check

that µ̂
t̂i→ µ̂′ and µ̂′ ≥ µ̂1. Thus µ̂1 ∈ C(NT , µ̂). By the transitivity of coverability we see that

µ̂1 ∈ C(NT , µ̂0) as desired.

Proposition 4. Under the above translation, if µ̂1 ∈ C(NT , µ̂0) then µ0  ∗
T µ1.

Proof. The proof is by induction on the length of the firing sequence σ̂ such that µ̂0
σ̂→ µ̂ with

µ̂ ≥ µ̂1. The basis case of a length 0 firing sequence is trivial.
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Induction Step:

Suppose that if µ̂ is coverable from µ̂0 in n steps then µ0  ∗
T µ. Suppose also that µ̂1 is

coverable from µ̂0 in n + 1 steps. Then there are markings µ̂ and µ̂′ such that µ̂0
σ̂→ µ̂

t̂i→ µ̂′ with

µ̂′ ≥ µ̂1 and σ̂ a firing sequence of length n. Then by the inductive hypothesis µ0  ∗
T µ. It is also

easy to see that since µ̂
t̂i→ µ̂′ then µ �1

ti
µ′, and since µ̂′ ≥ µ̂1 we know that µ′ contains µ1. Thus

µ ∗
T µ1. By the transitivity of  ∗

T we conclude that µ0  ∗
T µ1 as desired.

Because this reduction is efficient, and because the coverability problem can be solved in

EXPSPACE by Rackoff’s upper bound [58], we can conclude that LSTS reachability can be de-

termined in EXPSPACE as well.

4.1.3 EXPSPACE-Completeness of System Compliance

The previous sections proved that the LSTS reachability problem is EXPSPACE-complete. We

extend this complexity of the LSTS reachability problem to determining system compliance and

goal reachability in general systems.

Theorem 4.1.1 (General System Compliance). Let T be a local state transition system with a

finite set of propositional actions, Z a finite set of goal configurations, C a finite set of critical

configurations, and W an initial configuration. It is EXPSPACE-complete to determine if the

system is compliant, and if so to determine if there is a plan leading from W to one of the goal

configurations.

Proof. We already achieve EXPSPACE-hardness in the case where C is empty and Z has a single

element Z. This is simply a direct application of the EXPSPACE-hardness of goal reachability in

local state transition systems.

In order to show EXPSPACE membership we rely on the fact that EXPSPACE = COEX-

PSPACE ([63] chapter 8). This means that given a single critical configuration C, it is possible
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to determine in exponential space whether or not C is unreachable, that is, whether or not the

system is compliant with respect to C. In order to determine system compliance with respect

to a finite set C = {C1, . . . , Cm} of critical configurations, we can simply create a process which

checks compliance with each of the configurations in order. If this process ever determines that

the system is not compliant with respect to some Ci then it outputs “no”. If it determines that

the system is compliant with respect to all of the configurations, then it proceeds to determine if

one of the goals is reachable.

Given the set Z of goal configurations, another process can determine, in order, whether each

configuration is reachable. If the process finds a goal which is reachable, it outputs “yes”. If all the

goals are unreachable, it outputs “no”. Since the checks for (non-)reachability are done sequen-

tially, and each one is performed within exponential space, the whole process can be performed in

exponential space.

Compare Theorem 4.1.1 with Theorem 3.3.1. These theorems represent the first column of

Table 1.1. Lifting the restriction of well-balanced actions to allow un-balanced actions causes

the problem to jump from PSPACE to EXPSPACE. Viewed another way, we already discussed

how EXPSPACE membership relies crucially on using partial goals instead of exact goals. When

we make the further assumption of using only well-balanced actions we reduce the complexity to

PSPACE. It might be interesting to search for further reasonable restrictions that can make the

problem more tractable. Also note that using the techniques from Section 3.3 we can schedule a

plan if one exists without increasing the complexity.

4.2 Undecidability

In this section we show that General Weak Plan Compliance and General Plan Compliance are

both undecidable. The proof is by reduction from two-counter Minsky machines. The reduction
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we use is modeled after a similar reduction by Kanovich [42] to prove the undecidability of pure

monadic linear logic. There are several key differences however. First, Kanovich’s proof is about

first-order linear logic, and hence takes advantage of the existential quantifier to “create new

values.” We have no such operator, thus our proof corresponds more closely to a propositional

setting. In particular, this is not a reduction from Kanovich’s result, but rather a direct reduction

from Minsky machines.

Second, we point out that since our notion of reachability refers to partial goals, reachability

more closely corresponds to derivability of certain sequents in affine logic as described in Chapter 5.

While full propositional linear logic is known to be undecidable [46], it has been shown that full

propositional affine logic is decidable [44]. Thus, although our setting relates to propositional

affine logic, the satisfaction of both plan compliance and weak plan compliance differs enough

from simple reachability to affect the decidability of the problem.

4.2.1 Minsky Machines

We use a standard two-counter Minsky machine M of a certain form. We assume the instructions

alternate between instructions for register 1 and instructions for register 2. Instructions labeled

by ai will be ‘run’ by Alice, instructions labeled by bj will be ‘run’ by Bob.

No two instructions are labeled with the same label. States a1 and a0 are the initial and final

states of M , respectively. Furthermore, a0 is a halting state so it is distinct from the label of any of

M ’s instructions. M ’s configuration where M is in state m, and k1 and k2 are the current values

of counters r1 and r2, respectively, is denoted by (m; k1, k2). A computation performed by M is

a sequence of M ’s configurations such that each step is made by one of the above instructions:

(a1;n, 0) a1−→ · · · −→ (ai; k1, k2)
ai−→ (bj ; k′1, k

′
2)

bj−→ · · ·

A terminating computation is one that ends in a configuration (a0; ∗, ∗), that is, the final state a0

with any values in the counters.
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Jump ai: goto bj ;

Add ai: r1 := r1 + 1; goto bj ;

Subtract ai: r1 := r1 − 1; goto bj ;

0-test ai: if (r1 = 0) goto bj else goto bk;

Jump bj : goto ak;

Add bj : r2 := r2 + 1; goto ak;

Subtract bj : r2 := r2 − 1; goto ak;

0-test bj : if (r2 = 0) goto ak else goto al;

Table 4.1: The form of Minsky machine instructions.

Furthermore, for encoding purposes, each instruction of the form

ai : if (r1 = 0) goto bj else goto bk;

is replaced by the following set of instructions:

ai : if (r1 = 0) goto b ̂ else goto bk;

b ̂ : goto aı̂;

aı̂ : goto bj ;

(4.2.1)

and each instruction of the form bj : if (r2 = 0) goto ak else goto al; is replaced by the following

set of instructions:

bj : if (r2 = 0) goto ak̃ else goto al;

ak̃ : goto b ̃;

b ̃ : goto ak;

(4.2.2)

where b ̂, aı̂, ak̃, b ̃ are fresh, unique labels. It is important to note that instructions labeled by b ̂

and aı̂ can be applied only in a row, and only in the case when the corresponding value of counter

r1 is zero. Similarly instructions labeled by ak̃ and b ̃ can be applied only in a row, and only in

the case when the corresponding value of counter r2 is zero.
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4.2.2 Minsky Machine Translation

We can now describe how to embed a given Minsky machine M into a local state transition system

which we denote TM . The system TM will have two participants, Alice and Bob. They will each

limit their own local configuration to contain only one fact. Alice will use public tokens to track

the value of register 1, and Bob will similarly track the value of register 2.

States of agent A are encoded by private propositions: rA, sA
0 , sA

1 ,.., sA
i ,. . . . States of agent

B are encoded by private propositions: rB , sB
0 , sB

1 ,.., sB
j ,. . . . A public proposition R1 means

that “One public resource unit is allocated to Alice.” A public proposition R2 means that “One

public resource unit is allocated to Bob.” A public predicate C1(x) means “x is the label of an

instruction to be run by Alice”. A public predicate C2(x) means “x is the label of an instruction to

be run by Bob”. M ’s configuration of the form (ai; k1, k2) is encoded by rA, Rk1
1 , rB , Rk2

2 , C1(ai).

M ’s configuration of the form (bj ; k1, k2) is encoded by rA, Rk1
1 , rB , Rk2

2 , C2(bj).

Alice’s actions roughly correspond to M ’s instructions on register one. For every instruction

of the form ai : goto bj ; Alice has the corresponding jump action:

sA
i →A rA, C2(bj). (4.2.3)

This action does not change the public resources, and it writes the public fact C2(bj) to tell Bob

which instruction to perform next. Similarly, for every instruction of the form ai : r1 := r1+1;goto bj ;

Alice has the corresponding addition action:

sA
i →A rA, R1, C2(bj). (4.2.4)

For every instruction of the form ai : r1 := r1−1;goto bj ; Alice has the corresponding subtraction

action:

sA
i , R1 →A rA, C2(bj). (4.2.5)
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For every instruction of the form ai : if (r1 = 0) goto b ̂ else goto bk; Alice has two actions:

sA
i →A rA, C2(b ̂) (4.2.6)

sA
i , R1 →A rA, R1, C2(bk). (4.2.7)

Notice that we introduce nondeterminism here. Without any way of controlling this nondetermin-

ism, an agent may use action (4.2.6) when there is an instance of R1. The machine M cannot take

this direction because M first checks if r1 = 0 and if not, it follows the other branch of the instruc-

tion. The use of critical configurations play an essential role in controlling this nondeterminism as

we discuss below. Also note that although actions of types (4.2.3) and (4.2.6) have a similar form,

they are differentiated syntactically by their labels. In particular, actions of type (4.2.6) publish

one of the distinguished labels b ̂ that were introduced in construction (4.2.1).

Finally, Alice has an action that does not directly correspond to any of M ’s instructions. This

action explicitly links the labels ai with the corresponding propositions sA
i . For each corresponding

pair, Alice has the receive action

rA, C1(ai) →A sA
i (4.2.8)

in which Alice reads the label of an instruction from the network and enters a state ready to

perform that instruction.

Bob has actions on his side that correspond to instructions on M ’s register 2. For completeness,

we list those actions in the corresponding order below.

sB
j →B rB , C1(ak) (4.2.9)

sB
j →B rB , R2, C1(ak) (4.2.10)

sB
j , R2 →B rB , C1(ak) (4.2.11)

sB
j →B rB , C1(ak̃) (4.2.12)

sB
j , R2 →B rB , R2, C1(al) (4.2.13)

rB , C2(bj) →B sB
j (4.2.14)

62



Thus associated to any Minsky machine M is the local state transition system TM with actions

of types (4.2.3)–(4.2.14). The initial configuration of M is (a1;n, 0) and the corresponding initial

configuration of TM is rA, Rn
1 , rB , C1(a1).

In order to fully specify the problem of finding a compliant or a weakly compliant plan we must

describe what the goal configurations and confidentiality policies are. We specify a single goal of

C1(a0). This simply corresponds to an accepting state of M . Thus any configuration containing

C1(a0) is a goal configuration. We need to take some care in choosing what confidentiality policies

to use because they will be used to control the potentially undesirable behavior caused by the

nondeterminism introduced in the translation of the 0-test instructions. If we do not specify any

policies (or specify the empty policies) then the translation will not be faithful. That is, a plan

might follow action (4.2.6) when there is an instance of R1.

We choose critical configurations which designate this behavior as undesirable. Namely, Alice’s

critical configurations are those of the form C1(a ı̂), R1 and Bob’s critical configurations are those

of the form C2(b̃), R2 where a ı̂ and b̃ are the fresh unique labels from constructions (4.2.1)

and (4.2.2) respectively. Intuitively, since the labels a ı̂ and b̃ should only occur when r1 = 0

and r2 = 0 respectively, these critical configurations serve as a signal that the wrong branch was

taken in a plan. Thus if compliant plans and weakly compliant plans are supposed to accurately

represent machine computations, they should never reach these configurations.

Notice that these critical configurations do not take full advantage of the expressive power of

confidentiality policies. In particular they consist only of public facts. This means that both Alice

and Bob can recognize when a configuration is critical for either agent. We show undecidability

even in this more restrictive case.

It remains to show that this translation allows TM to faithfully simulate terminating compu-

tations of M . The next subsection provides the necessary soundness and completeness results.
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4.2.3 Soundness and Completeness

In this section we show that, under our translation of Minsky machines into LSTSs (with confiden-

tiality policies), the machine M has a terminating computation on (a1;n, 0) leading to (a0; ∗, ∗) if

and only if TM has a weakly compliant plan leading from rA, Rn
1 , rB , C1(a1) to C1(a0) if and only

if TM has a compliant plan leading from rA, Rn
1 , rB , C1(a1) to C1(a0).

We first show the soundness of our translation with respect to plan compliance. Since plan

compliance implies weak plan compliance the corresponding soundness result with respect to weak

plan compliance is an immediate corollary. We then show completeness of the translation with

respect to weak plan compliance. Again, since plan compliance implies weak plan compliance, we

get the completeness with respect to plan compliance as an immediate corollary.

Proposition 5 (Soundness). Given a Minsky machine M and its translation TM , if M ’s compu-

tation on (a1;n, 0) terminates in (a0; ∗, ∗), then TM has a compliant plan leading from

rA, Rn
1 , rB , C1(a1) to the partial goal C1(a0).

Proof. We show that whenever M and TM are in corresponding configurations, if M ’s instructions

lead to a configuration of the form (si; k1, k2), then TM can reach the corresponding configuration

which represents (si; k1, k2). We then show that the resulting plan is compliant. The argument

proceeds by induction on the length of the M -computation with the basis step being an M -

computation of only 1 step. (The 0-step case is trivial.)

Basis Step: (ai; k1, k2) →1
M (bj ; k′1, k

′
2)

Case: ai: goto bj;

M goes from (ai; k1, k2) to (bj ; k1, k2). Then TM satisfies

rA, Rk1
1 , rB , Rk2

2 , C1(ai) �∗ rA, Rk1
1 , rB , Rk2

2 , C2(bj)

by applying a receive action of type (4.2.8) followed by a jump action of type (4.2.3). Notice that
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the configuration on the right represents the configuration (bj ; k1, k2) as desired.

Case: ai : r1 := r1 + 1; goto bj;

M goes from (ai; k1, k2) to (bj ; k1 + 1, k2). Then TM satisfies

rA, Rk1
1 , rB , Rk2

2 , C1(ai) �∗ rA, Rk1+1
1 , rB , Rk2

2 , C2(bj)

by applying a receive action of type (4.2.8) followed by an addition action of type (4.2.4). Notice

that the configuration on the right represents the configuration (bj ; k1 + 1, k2) as desired.

Case: ai : r1 := r1 − 1; goto bj;

M goes from (ai; k1, k2) to (bj ; k1− 1, k2). Since M can perform this instruction we know that

k1 > 0. Thus TM satisfies

rA, Rk1
1 , rB , Rk2

2 , C1(ai) �∗ rA, Rk1−1
1 , rB , Rk2

2 , C2(bj)

by applying a receive action of type (4.2.8) followed by a subtraction action of type (4.2.5) (which

is applicable because k1 > 0). Notice that the configuration on the right represents the configura-

tion (bj ; k1 − 1, k2) as desired.

Case: ai: if (r1 = 0) goto b ̂ else goto bk;

M goes from (ai; k1, k2) to either (b ̂; k1, k2) if k1 = 0 or (bk; k1, k2) if k1 > 0. In the first case

TM satisfies:

rA, Rk1
1 , rB , Rk2

2 , C1(ai) �∗ rA, Rk1
1 , rB , Rk2

2 , C2(b ̂)

by applying a receive action of type (4.2.8) followed by an action of type (4.2.6). In the latter

case, TM satisfies

rA, Rk1
1 , rB , Rk2

2 , C1(ai) �∗ rA, Rk1
1 , rB , Rk2

2 , C2(bk)
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by applying a receive action of type (4.2.8) followed by an action of type (4.2.7) (which is enabled

because k1 > 0 in this case). Notice that the configurations on the right represent (b ̂; k1, k2) and

(bk; k1, k2) respectively as desired.

We conclude that any single instruction on M ’s register 1 can be simulated by TM ’s actions.

The cases in which M ’s instruction modifies register 2 are completely analogous, and so we omit

the details.

Induction Step: This follows immediately from the inductive hypothesis by splitting a length n

computation into a length n − 1 computation followed by a length 1 computation. Therefore

computations of any length can be simulated by TM . In particular, if (a1;n, 0) →∗
M (a0; ∗, ∗) then

we can conclude that TM satisfies

rA, Rn
1 , rB , C1(a1)  ∗ C1(a0).

We must now show why this plan is compliant. Recall that Alice’s critical configurations are

of the form C1(a ı̂), R1 where a ı̂ is a label which appears only in an instruction sequence resulting

from the transformation (4.2.1). We first show why none of the configurations in the plan are

critical. Every configuration of the form rA, Rk1
1 , rB , Rk2

2 , C1(a ı̂) in the plan corresponds to a

configuration (a ı̂; k1, k2) along M ’s computation. We remarked at the end of Section 4.2.1, that

this only happens when k1 = 0. Thus none of the configurations of the plan are critical for Alice.

A similar argument shows none of the configurations are critical for Bob.

Now suppose that Bob tries to deviate from the plan to create a configuration which is critical

for Alice. Without loss of generality we may assume he starts from a configuration of the form

rA, Rk1
1 , rB , Rk2

2 , C2(bj).

He must create a fact C1(a ı̂) (with a distinguished label) in order to succeed. By inspection

we can see that Bob can only do this if bj = b ̂. But that means that the machine configuration
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is (b ̂; k1, k2) which we already remarked happens only when k1 = 0. Thus, if Bob succeeds in

creating the fact C1(a ı̂) it means that there are no instances of R1 in the configuration, and

the result is not critical for Alice. A similar argument shows that Alice cannot create a critical

configuration for Bob by herself, if she starts from a configuration in the plan.

Thus the translation is sound with respect to both plan compliance and weak plan compliance.

In order to show that the translation is complete, we show that an arbitrary weakly compliant

plan leading from rA, Rn
1 , rB , C1(a1) to C1(a0) corresponds to the terminating computation of M

on (a1;n, 0). This direction requires some care because we do not know a priori that a weakly

compliant plan has a form which clearly corresponds to a computation of M . Thus we first show

that weakly compliant plans do have a nice form passing only through configurations which we

call regular.

Definition 4.2.1. If TM is the translation of a Minsky machine M , then a configuration is called

regular if it has one of the four following forms:

rA, Rk1
1 , rB , Rk2

2 , C1(ai) (I)

sA
i , Rk1

1 , rB , Rk2
2 (II)

rA, Rk1
1 , rB , Rk2

2 , C2(bj) (III)

rA, Rk1
1 , sB

j , Rk2
2 (IV)

Configurations of type (I) and (III) correspond directly to Minsky machine configurations as we

saw before. Configurations of type (II) and (IV) are the “intermediate” configurations that arise

from the use of the receive actions (4.2.8) and (4.2.14). In the previous proof, every configuration

of the plan was regular. The next lemma states that this must be the case for every plan which

starts in a regular configuration.

Lemma 4.2.2. Let TM be the translation of a Minsky machine M . If TM begins in a regular

67



configuration then every configuration in a plan is also regular. Furthermore, the configurations

cycle through types (I), (II), (III) and (IV) in that order.

Proof. It suffices to show that if TM is in any of the four regular configuration types, then any

action which is enabled will transform TM into the next type in the cycle. We analyze each case

separately.

Case I:

TM is in a regular configuration of type (I). By inspection the only action which is enabled is

one of Alice’s receive actions of type (4.2.8). It is easy to check that applying this action will yield

a regular configuration of type (II).

Case II:

TM is in a configuration of type (II). By inspection, the only possible actions which can be

enabled are Alice’s actions of type (4.2.3)–(4.2.7). One easily checks that applying any of these

actions will result in a regular configuration of type (III).

Case III:

TM is in a regular configuration of type (III). By inspection, the only action which is enabled

is one of Bob’s receive actions of type (4.2.14). It is easy to check that applying this action will

yield a regular configuration of type (IV).

Case IV:

TM is in a regular configuration of type (IV). By inspection, the only actions which are enabled

are Bob’s actions of type (4.2.9)–(4.2.13). Just as in the first case, it is easy to check that applying

any of these actions will yield a regular configuration of type (I).
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Using this result we can now show how to simulate an arbitrary weakly compliant plan by a

computation of M .

Proposition 6 (Completeness). Given a Minsky machine M and its translation TM , if TM has a

weakly compliant plan leading from rA, Rn
1 , rB , C1(a1) to C1(a0) then M ’s computation leads from

(a1;n, 0) to (a0; ∗, ∗).

Proof. We prove more generally that if the weakly compliant plan leads from rA, Rn
1 , rB , C1(a1)

to rA, Rk1
1 , rB , Rk2

2 , C1(ai) then M ’s computation leads from (a1;n, 0) to (ai; k1, k2). Since the

configuration rA, Rn
1 , rB , C1(a1) is regular, Lemma 4.2.2 implies that the plan proceeds to enter a

cycle of regular configurations. Since a regular configuration which contains C1(ai) is of type (I)

we know that the plan must start and end in a configuration of type (I) and therefore must consist

of some number of complete cycles (and no partial cycles). We can prove the result by induction

on the number of cycles in the plan. Recall that a full cycle consists of four actions, two actions

from Alice followed by two actions from Bob.

Basis Step: 0 Cycles

If the plan has 0 cycles then it starts in the ending state and hence a1 = ai, n = k1 and k2 = 0

so M also starts in the configuration (ai; k1, k2).

Induction Step:

The inductive hypothesis is that a weakly compliant plan with n− 1 cycles can be simulated

by an M -computation. We must then show that an n-cycle plan can also be simulated by an

M -computation.

After the first n− 1 cycles of the plan, TM is in a regular configuration of type (I) that looks

like the following:

rA, Rk1
1 , rB , Rk2

2 , C1(ai)
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By the inductive hypothesis we know that M leads to the corresponding configuration (ai; k1, k2).

We must only show how M simulates the last cycle of the plan. By Lemma 4.2.2 we know that the

cycle begins with a receive action of type (4.2.8) followed by an action of one of the types (4.2.3)–

(4.2.7).

Case I:

Alice applies a receive action followed by an action of type (4.2.3). This transforms TM into a

configuration of the form

rA, Rk1
1 , rB , Rk2

2 , C2(bj).

Since the second action is of type (4.2.3), the label ai is the label for a jump instruction, and M

can apply the instruction and end up in the configuration (bj ; k1, k2) which is represented by TM ’s

resulting configuration.

Case II:

Alice applies a receive action followed by an action of type (4.2.4). This transforms TM into a

configuration of the form

rA, Rk1+1
1 , rB , Rk2

2 , C2(bj).

Since the second action is of type (4.2.4), the label ai is the label for an addition instruction, and

M can apply the instruction and end up in the configuration (bj ; k1 + 1, k2) which is represented

by TM ’s resulting configuration.

Case III:

Alice applies a receive action followed by an action of type (4.2.5). This transforms TM into a

configuration of the form

rA, Rk1−1
1 , rB , Rk2

2 , C2(bj).
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Since the second action is of type (4.2.5), the label ai is the label for a subtraction instruction.

Since TM ’s action requires the existence of an occurrence of R1 we are guaranteed that k1 > 0.

Thus M can successfully apply the instruction and end up in the configuration (bj ; k1 − 1, k2)

which is represented by TM ’s resulting configuration.

Case IV:

Alice applies a receive action followed by an action of type (4.2.6). This transforms TM into a

configuration of the form

rA, Rk1
1 , rB , Rk2

2 , C2(b ̂).

Since the second action is of type (4.2.6), the label ai is the label for a 0-test instruction. Further-

more, we know there are no occurrences of R1 because the plan is assumed to be weakly compliant.

An occurrence of R1 would cause the cycle to finish with Bob publishing the fact C1(a ı̂) creating a

critical configuration contrary to the weak compliance of the plan. Thus k1 = 0 and M ’s previous

configuration is actually (ai; 0, k2). Hence M ’s test for 0 in register 1 is successful. M then ends

up in the configuration (b ̂; 0, k2) which is represented by TM ’s resulting configuration.

Case V:

Alice applies a receive action followed by an action of type (4.2.7). This transforms TM into a

configuration of the form

rA, Rk1
1 , rB , Rk2

2 , C2(bk).

Since the second action is of type (4.2.7), the label ai is the label for a 0-test instruction. Fur-

thermore, we know k1 > 0 because the action is only enabled when there is an occurrence of R1.

Thus when M performs the 0-test, it finds k1 > 0 and transitions into the configuration (bk; k1, k2)

which is represented by TM ’s resulting configuration.
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The cycle is completed by Bob applying a receive action of type (4.2.14) followed by an action

of one of the types (4.2.9)–(4.2.13). The analysis of each of these cases is completely analogous

to the previous cases completing the induction. We therefore conclude that M can simulate any

weakly compliant plan which completes some number of full cycles. In particular, if the weakly

compliant plan leads from rA, Rn
1 , rB , C1(a1) to C1(a0), then M ’s computation leads from (a1;n, 0)

to (a0; ∗, ∗).

Since every compliant plan is also weakly compliant, it follows that the translation is complete

with respect to plan compliance as well. The soundness and completeness results combine to imply

that Problem 2 (weak plan compliance) and Problem 3 (plan compliance) are both undecidable.

Theorem 4.2.3 (General Weak Plan Compliance). Let T be a local state transition system with

a finite set of propositional actions, Z a finite set of goal configurations, C a finite set of critical

configurations, and W an initial configuration. The problem of determining if T has a weakly

compliant plan leading from W to one of the goal configurations is undecidable.

Proof. The translation from Minsky machines creates a local state transition system TM with

only finitely many propositional actions, a single goal configuration, and a finite set of critical

configurations. The soundness and completeness of the translation imply the undecidability of the

problem.

Theorem 4.2.3 is in contrast with Theorem 3.3.3. These theorems represent the second column

of Table 1.1. Going from well-balanced systems to general systems alters the decidability of the

problem. Also note that in the well-balanced case, system compliance and weak plan compliance

have the same complexity, but in the general case system compliance is decidable and weak plan

compliance becomes undecidable. Therefore, the undecidability arises from a combination of the

possibility of having un-balanced actions and the importance of remembering the path that is
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followed to reach a goal as embodied by the definition of weak plan compliance.

Theorem 4.2.4 (General Plan Compliance). Let T be a local state transition system with a

finite set of propositional actions, Z a finite set of goal configurations, C a finite set of critical

configurations, and W an initial configuration. The problem of determining if T has a compliant

plan leading from W to one of the goal configurations is undecidable.

Proof. This proof is identical to the proof of Theorem 4.2.4.

We also want to point out the differences between Theorems 4.2.3 and 4.2.4 and the unde-

cidability results of [20] and [42]. The results of [20] are about secrecy in the context of security

protocols with an external intruder who has considerably more power than the honest protocol par-

ticipants. In that setting, undecidability is only attained with the ability to create an unbounded

number of fresh values, or nonces, combined with the unbounded memory of the intruder. In the

current work, we take advantage of the unbounded memory of the agents by allowing un-balanced

actions, but we work in a propositional setting in which no new values are ever created.

Similarly, the proof of undecidability for pure monadic linear logic [42] relies on the ability

to use the existential quantifier to create an unbounded number of new values. Also, linear logic

derivability roughly correspond to exact reachability in our setting. We lose some control by using

our weaker notion of reachability, and by not allowing new values to be created, but we regain

that control through the interpretation of confidentiality policies.
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Chapter 5

Foundation in Logic

In this chapter we present the logical foundation of our approach. It is desirable to have such a

logical foundation because we are often able to gain new insight by thinking in terms of a well

established formalism. For example we may be able to apply existing tools, which work with some

logical formalism, to the problem at hand. Here we demonstrate a connection to a variation of

linear logic known as affine logic. The contents of this chapter can be found in [35] and the full

proofs first appear in [33].

5.1 Linear and Affine Logic

Linear logic (LL), which was introduced in [25], is a resource-sensitive refinement of traditional

logic. It is presented as a Gentzen style sequent calculus. A sequent of the form Γ ` ∆ says

roughly that the resources in the multiset Γ can be used to produce the multiset ∆. Linear logic

differs in a number of ways from traditional logic, but most notably it does not allow the rules of

weakening or contraction.

The rule of contraction is given by

A,A, Γ ` ∆
A,Γ ` ∆
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It says that if we can produce ∆ using Γ and two copies of A, then we can also produce ∆ with

Γ and one copy of A. Weakening is the opposite rule and is given by

Γ ` ∆
A,Γ ` ∆

It says that if we can produce ∆ using Γ, the we can also produce ∆ with Γ and A, for any A.

The effect of disallowing the contraction rule is that it forces us to use each resource at most

once. The effect of disallowing the weakening rule is that it forces us to use each resource at least

once. This is why linear logic is popular when trying to model resource-sensitive systems. It allows

the available resources to grow and shrink, in contrast to traditional logic in which the resources

grow monotonically. Linear logic also provides a mechanism which allows certain resources to be

used any number of times. This will be useful when we use logic to model actions.

At a lower level, linear logic splits the traditional connectives defining conjunction and dis-

junction into two forms. For example, the traditional conjunction ∧ is split into ⊗ (multiplicative

conjunction) and & (additive conjunction). A derivation of a ⊗ conjunction forbids any sharing of

the resources used to derive each conjunct. In contrast, a derivation of a & conjunction requires

all resources to be shared.

Affine logic (AL) is the variation of linear logic which allows weakening, but still disallows

contraction. Thus, in affine logic, we may use each resource either once or not at all. Affine logic

is therefore an appropriate logic to use when we want to model the reachability of partial goals.

It allows us to work with the relevant resources in arbitrary contexts.

5.2 Reachability and Derivability

There is a well-known correspondence between state transition systems and linear logic. We

extend this connection to one between local state transition systems and affine logic. By encoding

the objects of local state transition systems as logical formulas we are able to relate partial goal
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reachability with derivability of certain Gentzen sequents within affine logic. Table 5.1 shows the

rules of affine logic that are most relevant to our correspondence.

Our translation of local state transition systems into affine logic follows closely the translation of

ordinary state transition systems into linear logic. There is one notable difference which deserves

mention here. If we want our translation to preserve all key elements of local state transition

systems, we must preserve the information which allows us to determine which action is allowed

to be used by which participant. For this reason we translate actions into linear implications with

a special constant which acts as a “lock”, as described below.

For a local state transition system T , multisets of facts are encoded using the multiplicative

conjunction, ⊗ (which is commutative).

pSq =
⊗

S.

The empty multiset is encoded as the multiplicative unit.

p·q = 1.

Transition rules are encoded as linear implication. This is where we use the “lock”. For each

agent A we have a constant symbol qA. We then encode transition rules using linear implication

as follows.

pXAXpub →A YAYpubq = qA ⊗ pXAXpubq ( qA ⊗ pYAYpubq

This technique forces derivations in affine logic to contain all the relevant information about which

agent is applying an action at a given point. Now, for the rule set RT we can define

pRT q = {prq : r ∈ RT }.

Since locks of the form qA are part of the linear implications we must also include these

constants as part of the global configuration. If I is the set of participants of T , then we define

pIq =
⊗

{qA : A ∈ I}.
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Structural rules

idΓ;A1, . . . , An ` Ai

Γ, A;∆, A ` C
cloneΓ, A;∆ ` C

Cut rules

Γ;∆1 ` A Γ;∆2, A ` C
cutΓ;∆1,∆2 ` C

Γ; · ` A Γ, A;∆ ` C
cut!Γ;∆ ` C

Left rules Right rules

Γ;∆ ` C
1`Γ;∆,1 ` C

1rΓ; · ` 1

Γ;∆, A1, A2 ` C
⊗`Γ;∆, A1 ⊗A2 ` C

Γ;∆1 ` C1 Γ;∆2 ` C2 ⊗r
Γ;∆1,∆2 ` C1 ⊗ C2

Γ;∆1 ` A Γ;∆2, B ` C
( `Γ;∆1,∆2, A( B ` C

Γ;∆, A ` C
( r

Γ;∆ ` A( C

Γ;∆, A ` C
∃`Γ,∆,∃x.A ` C

Γ;∆ ` [t/x]C
∃rΓ;∆ ` ∃x.C

Table 5.1: Some rules of affine logic.

We use a notion of provability which is based on an intuitionistic version of affine logic in which

the sequents have the form

Γ;∆ ` C

where ∆ is a linear context, Γ is an unrestricted context in which the resources may be used as

many times as necessary, and C is a single formula (see [13]). The relevant rules of affine logic are

given in Table 5.1. Under our encoding of local state transition systems we are able to achieve

the following results.

Theorem 5.2.1. (Soundness) For every pair of states W , Z, and every rule set RT defining a
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participant set I, if W  ∗
T Z then pRT q; pIq⊗ pWq ` pIq⊗ pZq is derivable in affine logic.

Theorem 5.2.2. (Completeness) For every pair of states W , Z and every rule set RT defining a

participant set I, if pRT q; pIq⊗ pWq ` pIq⊗ pZq is derivable in affine logic then W  ∗
T Z.

In order to prove these results we will pass through soundness and completeness results which

relate exact reachability to derivability in linear logic (Lemmas 5.2.3 and 5.2.4 respectively). We

then prove Lemma 5.2.5 which relates derivability of sequents in linear logic to derivability of

sequents in affine logic. This last lemma allows us to lift the soundness and completeness results

with respect to linear logic to the corresponding results with respect to affine logic. Since we are

concerned with sequents in both linear logic and affine logic we will write Γ;∆ `LL C for sequents

which are meant to be derived in linear logic, and we write Γ;∆ `AL C for sequents which are

meant to be derived in affine logic.

Lemma 5.2.3. For every pair of states W , Z and every rule set RT defining a participant set I,

if W �∗
T Z then pRT q; pIq⊗ pWq `LL pIq⊗ pZq is derivable.

Proof: (by induction on the length of the action sequence) We consider two basis cases:

Length 0 transition sequence: W �0
T Z.

That means that W = Z and pRT q; pIq⊗ pWq `LL pIq⊗ pWq is the conclusion of the iden-

tity rule.

Length 1 transition sequence: W �1
T Z.

So Z is reachable from W using only one rule from RT . Assume it is r : XαXpub →α YαYpub.

We get the derivation seen in Figure 5.1.

In the above derivation V appears after (above) the occurrence of the rule ⊗`. This V repre-

sents (pIq⊗pWq)\ (qα⊗pXαq⊗pXpubq). This means that the top right sequent can be separated
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pRT q; qα ⊗ pXαq⊗ pXpubq `LL qα ⊗ pXαq⊗ pXpubq pRT q; qα ⊗ pYαq⊗ pYpubq, V `LL pIq⊗ pZq
( `

pRT q; qα ⊗ pXαq⊗ pXpubq ( qα ⊗ pYαq⊗ pYpubq, qα ⊗ pXαq⊗ pXpubq, V `LL pIq⊗ pZq
⊗`

pRT q; qα ⊗ pXαq⊗ pXpubq ( qα ⊗ pYαq⊗ pYpubq, pIq⊗ pWq `LL pIq⊗ pZq
clone

pRT q; pIq⊗ pWq `LL pIq⊗ pZq

Figure 5.1: Derivation corresponding to a single transition.

by the use of ⊗r to reduce it to two applications of the identity. This shows that the lemma holds

for length 1 transition sequences.

Induction Step:

Assume it holds for transition sequences of length ≤ n. Now assume that W �n+1
T Z. Then

we know that there is some U such that W �n
T U and U �1

T Z. Therefore our induction hy-

pothesis tells us that we have two derivations ending in pRT q; pIq⊗ pWq `LL pIq⊗ pUq and in

pRT q; pIq⊗ pUq `LL pIq⊗ pZq. We can apply the cut rule with these two conclusions to obtain

a derivation with the conclusion pRT q; pIq⊗ pWq `LL pIq⊗ pZq as desired.

Lemma 5.2.4. For every pair of states W , Z and every rule set RT defining a participant set I,

if pRT q; pIq⊗ pWq `LL pIq⊗ pZq is derivable then W �∗
T Z.

Proof: Completeness is much more complicated than soundness. The reason for this is that there

may be many different LL-derivations of a given formula. We cannot simply assume that the

derivation which is assumed to exist has a nice form that corresponds to the form of a derivation

which arises in the proof of soundness. We will briefly sketch the ideas here noting that the key to

this argument is the ability to permute certain rules above or below others. We direct the reader

to [47] for the proofs of these permutation rules. We also note that LL completeness has been

shown for rewriting systems before in [12, 13].

By cut elimination there is a cut-free derivation of the sequent

pRT q; pIq⊗ pWq `LL pIq⊗ pZq.
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In particular, this derivation satisfies the sub-formula property which states that any formula

occurring in the derivation must be a sub-formula of the formulas occurring in the conclusion.

This allows us to restrict our attention to derivations with only the following rules: id, clone, ⊗`,

⊗r, 1`, 1r, ( ` and ( r. Furthermore, we can rule out derivations which use (r since we do

not use nested implications. As mentioned above, these rules may be permuted in restricted ways

as proven in [47]. These permutation results allow us to assume that clone appears below all other

rules, ⊗r occurs just below id or 1r which occur at or near the leaves, and that ⊗` and 1` are

applied greedily (when reading the derivation from bottom to top). We must respect the nesting

structure, so that in decomposing (A ⊗ B)( C we must apply the ( ` rule below the ⊗` rule.

The derivation can thus be assumed to have the following form:

l
l

l
l

l
l

l
l

l
l

l
l

l
ll

,
,

,
,

,
,

,
,

,
,

,
,

,
,,

clone

( `

⊗`, 1`

...

( `

⊗`, 1`

⊗r

id, 1r

Figure 5.2: The form of a permuted proof.

Note that the conclusion of each ( ` is of the form pRT q; pr̄iq, pIq⊗ pWiq `LL pIq⊗ pZq,

where pr̄iq is a multiset of m - i encodings of actions which have yet to be decomposed, and where

there are m applications of( ` in the derivation. In the conclusion of the bottom application of

( ` is W0 = W . In the right premise of the top application of( ` is Wm = Z.

Claim: There is a transition sequence r1, . . . , rm such that

W = W0 �r1 W1 �r2 · · ·�rm
Wm = Z

allowing us to conclude W �∗
T Z.
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The claim follows from the simple observation that if the occurrence of ( ` between Wi and

Wi+1 decomposes qα⊗pXαq⊗pXpubq ( qα⊗pYαq⊗pYpubq then Wi = XαXpubV for some V and

Wi+1 = YαYpubV for the same V . Thus Wi �T Wi+1 via XαXpub →α YαYpub. This observation is

easily turned into an inductive proof.

Lemma 5.2.5. Γ;W `AL Z is derivable if and only if there is some U such that Γ;W `LL Z⊗U

is derivable.

Proof: This lemma is an immediate corollary to Lemma 3.1 in [36]. The if -direction is imme-

diate since every LL-derivation is also an AL-derivation. The only if -direction requires a simple

induction on the structure of the LL-derivation. We direct the reader to [36] for more details.

Proof: (of Theorems 5.2.1 and 5.2.2) The three lemmas combine in the following way to imply

soundness and completeness with respect to AL.

W  ∗
T Z ⇔ (by definition)

∃U s.t. W �∗
T ZU ⇔ (Lemmas 5.2.3, 5.2.4)

∃U s.t. pRT q; pIq⊗ pWq `LL pIq⊗ pZq⊗ pUq⇔ (Lemma 5.2.5)

pRT q; pIq⊗ pWq `AL pIq⊗ pZq

The above theorems relate the existence of a plan to derivability in pure affine logic. It is also

possible to translate local state transition systems into affine logic theories. Namely, for every

action of the form X →A Y we include a new axiom of the form qA⊗X ` qA⊗Y . The set of

axioms of a theory T is denoted by AxT . Theories with axioms of this form are called (pure)

Horn theories. It can be easily seen that finite Horn theories can be faithfully represented in the

formalism above, by listing the non-logical axioms, AxT, in the unrestricted context, Γ.
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Under this interpretation, the existence of a plan leading from an initial state W to an exact goal

Z can be shown to be equivalent to derivability of the sequent pIq⊗W ` Z in the corresponding

Horn LL-theory. Also, pIq⊗W ` Z is derivable in the corresponding AL-theory if and only if

pIq⊗W ` Z⊗U is derivable in the LL-theory for some U [36].

The definition of system compliance is essentially an unreachability condition. Namely, we

expect that every critical configuration should be unreachable. Under our translation into affine

logic, this is the same as saying that the corresponding sequents should not be derivable. Trans-

lating the definition of plan compliance is more subtle. It corresponds to a certain kind of normal

form proof not containing sequents whose left hand side represents a critical configuration. We do

not investigate this relation further.
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Chapter 6

Conclusion and Future Directions

6.1 Conclusion

In this thesis we have presented an abstract model for collaboration which addresses the inher-

ently competing notions of protecting and releasing resources. We have discussed what it means

to generate a collaborative plan and maintain the participants’ confidentiality of information or

resources relative to a data confidentiality policy. We provided three definitions of policy com-

pliance with respect to a given set of data confidentiality policies: system compliance, weak plan

compliance, and plan compliance. Since the level of trust among collaborating agents may differ

depending on the agents and the context, each interpretation of the agents’ confidentiality policies

is appropriate for a different level of trust among the agents.

We examined the complexity and decidability of the Collaborative Planning Problem with Con-

fidentiality with respect to each of the three definitions of policy compliance, for both well-balanced

systems and for general systems which may have un-balanced actions. We showed that in the well-

balanced case, all three versions are PSPACE-complete. We also showed that if we fix in advance

the finite signature we want to use, then these problems can be solved in polynomial time for

well-balanced systems. In the general case, however, system compliance is EXPSPACE-complete,
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and both plan compliance and weak plan compliance are undecidable. This undecidability is due

to the importance of remembering the path taken to reach a configuration of the system in both

versions of plan compliance. This is in contrast with other undecidability results in the security

literature [20] which require the creation of fresh values. Finally, we have demonstrated the logi-

cal foundation of our approach with a translation into affine logic which relates the existence of a

collaborative plan to derivability.

6.2 Future Directions

Currently we have considered systems with a finite signature that remains unchanged throughout

an execution. In practice, agents are continually creating and destroying values. We would like to

consider ways to model the generation of fresh values. This would be appropriate when, for exam-

ple, creating new passwords. The ability to create new values leads naturally to a more thorough

investigation of our formalism’s ability to distinguish between current and obsolete knowledge.

Can our notion of confidentiality policy easily accommodate this distinction?

While data confidentiality policies specify where certain data may or may not go, it does not

explicitly specify rules of transmitting the data. For example, the results of some medical tests

may be known by both the doctor and the nurse, but only the doctor is allowed to pass the results

on to the patient. We hope to integrate this type of information flow policy into our work. Such

policies may also provide us with the ability to trace information leaks back to their source. This

would provide a sort of auditing mechanism.

The interplay between confidentiality and goal reachability suggests agents who make rational

trade-offs between the two. We may be able to gain more insight into the situation by enriching

our formalism with an explicit notion of rationality. We would like to consider such “rational

adversaries” both in contrast to and in combination with malicious adversaries.

Finally, this work and all the suggestions for future work can also be put into a synchronous
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context in which there is an explicit notion of time. The existence of such a global clock may

affect the properties of systems in interesting ways.

Looking towards possible directions of future research, we note that the computational prob-

lems considered in this thesis require full information about each agent’s actions and policies. As

a participant in the collaboration, however, one would like to be able to make some local assess-

ment of the confidentiality guarantees provided by the system. One advantage to this approach

is that each agent could choose the interpretation of their confidentiality policy that best suits

their needs. It may be that methods from mechanism design can help to decentralize the analysis.

Such an approach is likely to entail the introduction of explicit utility functions and incentives to

the model. This may be the right setting in which to explore connections between the definition

of plan compliance and types of Nash equilibria as mentioned in Section 2.3.

Some other directions aim at increasing the expressibility of the model. Many algorithms and

protocols require the use of random values or fresh values. In the past, the use of the existential

quantifier has proven successful as a tool for modeling them [20]. We would like to explore the

complexity of the three problems discussed in this thesis, in both the unbalanced and well-balanced

cases, when existentials are used.

It would be interesting to consider lifting some of the restrictions about the locality of the

actions. Namely, we might consider restrictions that correspond to “read” and “write” privileges

with the structure of a lattice [18]. The extra structure could be potentially useful for more natural

models of communication and for expressing even richer confidentiality policies.

The confidentiality policies we use in this thesis do not place any explicit restrictions on the

actions. Many real-world policies have rules about when an agent may or must perform an action

and when an action is prohibited. We may be able to express such policies by imposing parametric

conditions on the actions, including boolean conditions. This would allow the model to align more

closely with real-world scenarios. Similarly, we might be able to introduce parameters that help

determine the context. Currently each context has a corresponding transition system. Parameters
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could determine which actions are available and which configurations are critical, allowing the

model to consider the impact on an agent of changing contexts in various ways.

Finally, time can be an important factor in some places like financial institutions. Using

an asynchronous model such as the one in this thesis is not well-suited to these time-sensitive

situations. We want to explore a similar synchronous model which has some notion of explicit

time. We believe this could provide a rich exploration of confidentiality concerns which are not

expressible in the current model.
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