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Abstract

When collaborating agents share sensitive information
to achieve a common goal it would be helpful to them to
decide whether doing so will lead to an unwanted release
of confidential data. These decisions are based on which
other agents are involved, what those agents can do in the
given context, and the individual confidentiality preferences
of each agent. In this paper we consider a model of col-
laboration in which each agent has an explicit confidential-
ity policy. We offer three ways to interpret policy compli-
ance (system compliance, plan compliance and weak plan
compliance) corresponding to different levels of trust among
the agents. We show it is EXPSPACE-complete to determine
whether a given system is compliant and whether the agents
can collaboratively reach a given common goal. On the
other hand, we show it is undecidable to determine whether
a given system has either a compliant plan or a weakly com-
pliant plan leading to a common goal. The undecidability
results are, in part, a consequence of the flexibility of the
model, which allows interpretations of policy compliance
that depend on current configurations.

1 Introduction

When organizations or individuals collaborate, they of-
ten share a certain amount of information to achieve some
desired result. While much of the information may be gen-
eral and harmless, some of the information is sensitive, such
as detailed sales reports at an organizational level or social
security numbers and credit card numbers at an individual
level. There is an interplay between achieving a collabora-
tive goal on the one hand, and guarding sensitive information
on the other. The decision about which pieces of information
to share and which pieces to guard is usually based on a num-
ber of factors related to trust. Different participants can be
trusted with different information in different contexts. Let
us consider some examples.

When Alice eats at a restaurant she usually pays with a
credit card. In order to pay for the meal she must give her
card to the waiter, Bob, who takes it away for validation. She

trusts the waiter, Bob, not to write down her card number or
share it with anybody else. If she met Bob in a different
social situation, however, she might not give him her credit
card in that social context. Similarly, she doesn’t give her
credit card to her friends even though she may trust them.
This is because her friends have no legitimate reason to learn
her card number. Alice’s decision to share her card number
is based on necessity to achieve the goal of paying for dinner,
and trust in the restaurant process. Both of these factors are
dependent on the situation and the individual.

Consider another scenario where two competing compa-
nies make a temporary and partial strategic alliance. This
might occur, for example, if they want to forecast the direc-
tion of the market in a collaborative way. Generally these
companies will not trust each other with their business se-
crets, but they will have to share something to create an ac-
curate forecast. They may first start with a contract that lim-
its how the shared information will be used or who it can be
shared with. This serves to change the context of the inter-
action. They build mutual trust by explicitly limiting their
actions to ones which are acceptable by both sides.

In Section 2 we consider a more detailed example focus-
ing on a medical test for a patient. We see how the patient’s
confidentiality preferences distinguish acceptable flows of
information from unacceptable ones.

These examples serve to demonstrate that confidentiality
of information is not an absolute notion. This may be viewed
as a special case of privacy being dependent on context [4].
Not only does confidentiality depend on the context of an in-
teraction, it also depends on the personal preferences of the
agents involved. In these examples the agents have already
implicitly or explicitly formulated an idea of which infor-
mation flows are acceptable and which are unacceptable, or
at least undesirable. Thus when attempting to model and
analyze these interactions the confidentiality preferences or
policies of the agents play a crucial role. The first question
to ask about these scenarios is whether the agents are able to
reach their common goal in a way that complies with each of
the agents’ confidentiality policies.

This paper explores an abstract model of collaboration
in which we can formally answer that question. In this
model, agents share a common goal but have their individ-
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ual preferences explicitly written as confidentiality policies.
We build on our previous work in this area [21, 22] based
on local state transition systems in which locally controlled
data are represented by a syntactic partition of predicate sym-
bols. In this model different trust scenarios are represented
by different transition systems and confidentiality policies.
Each global configuration is comprised of local configura-
tions for each agent together with a public configuration.
The agents change the configuration using actions which are
constrained to affect only their own local configuration and
the public configuration. The agents collaborate to try to
reach a configuration which contains some common goal.
This framework resembles a multi-agent version of the clas-
sical planning problem from the artificial intelligence liter-
ature [6, 23, 30, 9, 14]. We borrow some of the terminol-
ogy and say that a collaborative plan is a sequence of actions
leading from the initial configuration to a goal configuration.
The use of the term plan emphasizes the fact that agents typ-
ically want to find an acceptable sequence of actions before
the interaction in order to avoid missteps.

We assume that the agents are further constrained by their
own confidentiality concerns. These are expressed explicitly
as confidentiality policies, which are essentially sets of con-
figurations that the agents deem undesirable. We call such
configurations “critical”. We offer three possible interpreta-
tions of the policies which may correspond to various levels
of trust among the agents. The first two interpretations were
proposed in [21], but the last interpretation is new.

The first interpretation of policies is system compliance.
A system is compliant if there is no way for the agents to
reach a critical configuration. This might be appropriate for a
situation in which the agents are generally untrusting such as
the example above with competing companies. The contract
they create can serve to limit each agent’s actions in a way
that makes any critical configuration unreachable. That is,
any sequence of actions is safe to use because no sequence
can create a critical configuration.

The second interpretation is weak plan compliance. A
weakly compliant plan is one which avoids the critical con-
figurations. Weak plan compliance is violated only when the
agents actually reach a critical configuration while follow-
ing a particular plan. This is a much weaker interpretation
than system compliance which considers any possible future
actions of the agents. This interpretation emphasizes the cur-
rent knowledge of the agents along a single plan. Weak plan
compliance is more appropriate for situations like the one
above in which Alice uses a credit card at a restaurant. She
trusts the waiter not to write down her card number within the
restaurant process even though he can. So although a critical
configuration, in which the waiter retains Alice’s card num-
ber, is reachable, she trusts the waiter to follow the standard
restaurant procedure and not use the actions available to him
to create the critical configuration.

The final interpretation is simply called plan compliance.

This interpretation provides an intermediate level of protec-
tion between system compliance and weak plan compliance.
Intuitively, if a plan is compliant it protects those agents who
follow the plan against those who may choose to deviate
from the plan. In particular, if any subset of the agents de-
viate from a compliant plan then as long as the other agents
abort, those who deviated can never reach a configuration
which is viewed as critical by those who did not deviate. This
may also be appropriate for situations involving competing
companies. In contrast to system compliance, this interpre-
tation considers only one plan at a time. Instead of implying
that any sequence of actions is safe to use, it implies that a
specific sequence is safe to use even if everybody else be-
haves differently.

The confidentiality policies themselves are quite flexible.
In particular, they can express notions of current knowledge.
For example, Alice’s policy can specify that Bob should not
be able to learn her current password. Her policy allows Bob
to learn her old password as long as he does not learn her
current password. This is an advantage of a state-based ap-
proach to confidentiality as opposed to the more trace-based
approach of Non-Interference [35, 17, 31]. Declassification
has to be handled very carefully in that setting [32, 36, 33].

The main results of this paper are about the decidability
and complexity of determining whether there is a plan lead-
ing to a goal which is compliant with all of the agents’ confi-
dentiality policies. We determine the complexity of the col-
laborative planning problem with respect to each of the three
interpretations. In our previous work [21, 22] the actions
were assumed to be well-balanced. That is, the number of
atomic pre-conditions of an action was the same as the num-
ber of atomic post-conditions of that action. Intuitively, the
size of the global configuration remains constant throughout
an interaction. In contrast, in the present work, we assume
no such restriction. Since we allow un-balanced actions in
this work, the configuration size may grow or shrink dra-
matically, impacting the complexity of the problems under
consideration.

Our results are that it is EXPSPACE-complete to deter-
mine whether a system is compliant and if so to determine
whether it has a plan leading to a goal. On the other hand,
we show that it is undecidable to determine whether a system
has a weakly compliant plan leading to a goal. Similarly it is
undecidable to determine whether a system has a compliant
plan leading to a goal. These are in contrast to the complex-
ity results of [21] in which the first two decision problems
(using system compliance and weak plan compliance) were
both shown to be PSPACE-complete when the actions are re-
stricted to be well-balanced (see Figure 1). Our results make
it clear that these decision problems can be quite sensitive
to modeling choices regarding the types of actions available
as well as the interpretation of confidentiality policies used.
The possible presence of un-balanced actions and the abil-
ity of our model to express policies which depend on the en-
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tire path taken increase the complexity of the problems under
consideration. Specifically, our undecidability results rely, in
an essential way, on the fact that the definitions of both plan
compliance and weak plan compliance depend on the path
through the system the agents follow.

System (Weak) Plan
Compliance Compliance

Well-balanced PSPACE PSPACESystems
General EXPSPACE UndecidableSystems

Figure 1. Summary of Complexity Results.

We also contrast these undecidability results with similar
undecidability results from security protocol analysis [13].
In the Dolev-Yao model used to analyze security protocols
the attacker is much more powerful than the honest proto-
col participants. Our current work uses a model in which
there is no external attacker, and intuitively, the participants
are evenly matched, and they are more capable than the hon-
est participants in security protocols, e.g. they may loop and
they may have unbounded memory. This “closed-room” set-
ting already provides interesting dynamics which are worth
investigating. The Dolev-Yao model allows the participants
and the attacker to create nonces, or fresh values, but the
model in this paper does not currently allow for such fresh
value creation. This is a notable difference because the un-
decidability results of [13] rely on the use of nonces, whereas
we obtain undecidability in this work without them. In some
ways, our current model is similar in spirit to some features
of the Dolev-Yao model of contract signing protocols [7, 8]
if all participants are “optimistic.”

The rest of the paper is organized as follows. Section 2
reviews the definitions from local state transition systems.
In Section 3 we formally present the three interpretations of
confidentiality policies. Section 4 shows that system com-
pliance is EXPSPACE-complete. We give the proofs of un-
decidability of weak plan compliance and plan compliance
in Section 5. We discuss related work in Section 6. Finally,
we conclude in Section 7 and indicate possible directions for
future research.

2 Background

Our point of departure is the formalism of local state tran-
sition systems [21, 22], which was designed to express con-
fidentiality policies alongside goals of collaboration. We
briefly review the relevant details of that formalism here.

At a high level, the model has four main components. Be-
ing an evolving system, there must be a way of describing
the configuration of the system at any given moment. Addi-
tionally, we describe how the agents transform the configura-

tions from one to another via local actions. In our setting the
agents also have some (common) goal of the collaboration,
as well as (distinct) confidentiality concerns. These concerns
are expressed as confidentiality policies. We now introduce
each of these four components one at a time.

Configurations. Building the description of a configura-
tion from the ground up, we have an underlying signature
Σ of constants, variables, function symbols, and predicate
symbols. We impose a finiteness condition on the signature,
namely that it can only express finitely many facts. Thus
Σ itself must be finite. Additionally, if we allow function
symbols then we must restrict the nesting depth to be finite.
Alternatively, we can simply assume Σ has no function sym-
bols. The results of this paper are unaffected by this choice.

Definition 1 A fact is a ground, atomic predicate over multi-
sorted terms.

Facts have the form, P (t̄) where t̄ is a tuple of terms con-
taining no variables. A configuration is a multiset of facts.
We take both XY and X,Y to denote the multiset union of
multisets X and Y . For any fact P , we use P k to denote
P, P, . . . , P︸ ︷︷ ︸

n times

and P 0 to indicate there are no instances of the

fact P .
The global configuration is divided into different local

configurations each of which is accessible to a specified
agent. There is also a public configuration that is publicly
accessible to all agents involved in the collaboration. We are
considering interactions that take place in a “closed-room”
setting, so we can ignore concerns about an outside intruder.
The separation of the global configuration is done via a par-
tition of the predicate symbols. We typically annotate local
predicate symbols with the identity of the agent who owns
it. So, for example, Alice’s local facts will look like PA(t̄)
or even perhaps just A(t̄). The interpretation is that Alice
has the information t̄ kept locally. Any predicate symbol not
explicitly annotated with an identity is public. In this way,
the predicate symbols act like fields of a database in which
information may be stored.

The global configuration is the multiset union of the local
configurations and the public configuration:

Z = ZA1
, ZA2

, . . . , ZAn
, Zpub

where ZAi is the local configuration of agent Ai and Zpub
is the public configuration. More generally, we use XA to
denote any multiset of facts all of which are local to agent
A, and Xpub to denote any multiset of facts all of which are
publicly accessible.

Local Actions. Each agent has a finite set of actions which
transform the global configuration. Under the interpretation
of the local predicates as accessibility restrictions it is natural
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to restrict the actions to conform to that interpretation. Thus
the actions are local in the sense that each action can only
depend on the local facts of at most one agent. They must
have the form

XAXpub →A YAYpub

where the agent who owns the action (indicated by the sub-
script on the arrow) is the same agent who owns any local
facts mentioned (on both the right and left of the arrow). An-
other way of viewing this restriction is that agent A does
not have either read or write access to any of the predicates
which are local to other agents.

The actions work like re-writing rules. XAXpub are
the pre-conditions of the action and YAYpub are the post-
conditions of the action. The pre-conditions must be present
in the configuration for the action to be enabled. By ap-
plying the action, the pre-conditions are erased and re-
placed with the post-conditions. The rest of the configu-
ration remains untouched. Thus, we can apply the action
XAXpub →A YAYpub to the global configuration V XAXpub

to get the global configuration V YAYpub.

Definition 2 A local state transition system T = (Σ, I, R)
is a triple where Σ is the finite signature of the underlying
language, I = {A1, . . . , An} is a finite set of agents and R
is a set of local actions owned by those agents.

In general, these may be first order actions in which all free
variables are implicitly universally quantified. For the pur-
poses of this paper we only need to consider systems with a
finite set of propositional actions, that is, actions without any
variables.

In [21], actions were assumed to be well-balanced. That
is, the number of facts in the pre-condition of an action was
the same as the number of facts in the post-condition of the
action. The reason for placing such a restriction is to min-
imize the complexity of the system without sacrificing too
much expressivity. In this paper, however, we allow general
actions which might be un-balanced. For example an agent
might have an action that copies a fact: P (t)→A P (t)P (t).
Similarly, an agent may have an action which erases a fact:
P (t)P (t) →A P (t). Both of these actions are un-balanced
and they grow and shrink the configuration size respectively.
The results of this paper underscore the impact of the choice
between systems with only well-balanced actions and sys-
tems which allow un-balanced actions.

There is a small detail that deserves some attention. In the
standard Dolev-Yao model, the intruder is always assumed
to have the same set of basic actions which includes reading
any message from the network. This is a useful assumption
because it considers the worst-case scenario. In our setting,
we do not force every agent to have such actions, although
we certainly do not preclude such a situation. Thus, if a term
appears in a public predicate, it may not be accessible to ev-
ery agent. The idea is to have a formalism that is as general

as possible by limiting the number of assumptions we have
about it. Although we, as modelers, do not assume the agents
have all the Dolev-Yao actions, the agents themselves might
assume the others do have those actions. This assumption
could be reflected their decision about which configurations
are considered to violate their confidentiality as described
later in this section.

Goals of Collaboration. Since we are considering situa-
tions in which the agents are collaborating, we need a way
of expressing the goals of collaboration as well as the reach-
ability of those goals.

Let us start with some notation to represent exact reach-
ability. We let X >nT Y indicate that the configuration Y is
exactly reachable from the configuration X by applying n
actions from the system T . That is, using actions from T the
system can transform from X into Y without any extra facts.
X >∗T Y means Y is exactly reachable from X by applying
0 or more actions. We will later need to talk about configu-
rations which are reachable using the actions from all agents
except for one. Thus we write X>∗−Ai

Y to indicate that Y
can be reached exactly from X without using the actions of
agentAi, (the system T is implied). We also writeX>1

t Y to
mean that an action labeled by t performs the transformation
in one step. We may drop the subscript T if the system is
clear from the context.

Typically the agents will not care about the entire descrip-
tion of a goal configuration. It will usually be sufficient for
a configuration to contain certain facts. For example, in con-
tract negotiations the text of the contract is not known at the
outset, but the goal is to have a signed contract. For this
reason the notion of a partial goal is better suited for this
setting. For this purpose we use the notation X  ∗T Y to
indicate that a configuration containing Y is reachable from
X by applying 0 or more actions from the system T . That is,
there is some multiset of facts U such that X >∗T Y U . Sim-
ilarly, we write X  ∗−Ai

Y to indicate that this partial goal
is reachable without using the actions of Ai, and X  1

t Y
to indicate that action t performs the transformation in one
step. In this paper, all goals are partial goals, and reachabil-
ity is interpreted in this weaker sense unless otherwise stated.

Definition 3 A plan based on T is a sequence of configura-
tions X1, X2, . . . , Xn such that Xi>

1
T Xi+1 for 1 ≤ i < n.

The configurations Xi are contained in the plan.

Thus, if a system satisfies X  ∗T Y , then the system has a
plan leading from X to Y . We also say that Y is reachable
from X . The use of the word plan is to indicate that it is a
suggested course of action. Given a plan, each of the agents
may choose to follow the plan or deviate from the plan. Al-
though the words “plan” and “execution” mean the same at
a technical level, we use the former to emphasize the differ-
ence between the suggested course of action and the course
of action which is actually taken.
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What does it mean for a configuration to be a goal config-
uration? We take a flexible approach to this issue. It seems
reasonable to assume that collectively the agents have a way
of looking at any configuration and deciding if it meets the
goal requirements or not, that is, if it contains a goal config-
uration or not. At the technical level, we assume that the set
of goal configurations is decidable. We put no a priori lim-
itations on the complexity of the procedure which decides
the set of goals, although one can typically assume that it is
efficient (polynomial time). For the purposes of this paper,
however, it is sufficient to consider the more restrictive case
of a finite set of goal configurations that the agents agree
upon ahead of time.

Confidentiality Policies. Throughout a typical collabora-
tion, some information must be revealed and other infor-
mation should be guarded. Also, the information which is
shared is often only shared selectively with the agents who
need it to successfully achieve the goals of collaboration.

For example, consider a patient who needs to have a med-
ical test performed at a hospital. The process begins with
the patient registering with the receptionist who anonymizes
the patient with some ID number. A nurse then gets a test
sample from the anonymized patient (e.g. draws blood, ob-
tains DNA, etc.) to send off to the lab. A lab technician per-
forms the test and sends the results to the patient’s physician
who then gives the appropriate diagnosis and/or prescription
to the patient. The patient has some preferences regarding
which agents learn (or can learn) certain combinations of
data. For example, the lab technician must learn the result
of the test and be able to connect it to his ID number. But
the patient does not want the technician to connect the test
result to his true identity. The patient will have similar but
distinct preferences regarding the other agents involved in
the process. These preferences are expressed as partial con-
figurations that the patient wants the system to avoid.

We therefore allow each agentAi to specify the set of par-
tial configurations which he or she deems to be undesirable
or critical.

Definition 4 The confidentiality policy of Ai, or simply the
policy of Ai is the set of configurations that Ai specifies as
critical.

Thus, in the above example, if the lab technician is identi-
fied by LT then the patient’s policy will contain for example
PLT (test result, patient name).

Definition 5 If a global configuration C contains a partial
configuration from Ai’s policy then C is said to be critical
for Ai. C is simply called critical if it is critical for some
agent.

The set of critical configurations is thus the union over all
agents Ai of the set of configurations critical for Ai. These
policies should be set in accordance with the existing laws.

Notice that these policies can be very expressive. For ex-
ample, Alice does not want Bob to know her current pass-
word. If Alice’s password is ’15’ at one point and then
she changes it to ’21’, then she doesn’t care if Bob eventu-
ally learns that her password was ’15’. That is, she views
both the configuration PA(A, 15, Pwd), PB(A, 15, Pwd)
and the configuration PA(A, 21, Pwd), PB(A, 21, Pwd) to
be critical, but she will accept either the configura-
tion PA(A, 15, Pwd), PB(A, 21, Pwd) or the configuration
PA(A, 21, Pwd), PB(A, 15, Pwd).

We take the same approach to expressing confidential-
ity policies as we did for expressing goal configurations.
Namely, we simply assume each agent Ai has a procedure
which can look at a global configuration and determine if it
is critical for Ai. That is, the policies are decidable. Again,
we place no a priori bound on the complexity of the proce-
dure, but one can typically assume the procedure works in
polynomial time. Just as with goal configurations, it is suf-
ficient for this paper to consider the more restrictive case of
policies which are finite sets of critical configurations.

3 Interpreting Confidentiality Policies

The agents’ confidentiality policies are simply sets of con-
figurations which the agents want to avoid. However, they
may want to avoid them in a looser or stricter sense depend-
ing on the level of trust the agents have amongst themselves.
We therefore propose several ways to interpret these confi-
dentiality policies. The first two interpretations were intro-
duced in [21] while the third interpretation is new. In this
section we describe each of these interpretations and state
the corresponding computational problems.

Definition 6 (System Compliance) A system in initial con-
figuration W is called compliant if the set of reachable con-
figurations from W contains no configuration which is criti-
cal for any agent.

Compliant systems may be viewed as well-designed sys-
tems. Each agent has a guarantee that the actions of the sys-
tem do not allow their critical configurations to be reached,
whether by the malicious collusion of other agents or by the
careless use of their own actions. A compliant system dis-
penses with all confidentiality concerns before the collabora-
tion even starts, and the agents can then focus on the separate
problem of finding a plan which leads to a goal configuration.
Let us consider the simplest example.

Suppose agent A has a term t which should never appear
in the public setting. Then A’s policy will indicate that any
configuration containing N(t) is critical since the predicate
N() is publicly accessible. However, A might have the ac-
tion PA(x) →A N(x) which publishes any value from the
predicate PA(). In this case, the system is definitely not com-
pliant when starting in an initial configuration which con-
tains PA(t). Since A has the ability to publish t, she can
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single-handedly create a configuration which is critical for
her.

This interpretation is most appropriate when the agents
share a very low level of trust. For example, a company
may ask employees or external collaborators to sign a non-
disclosure agreement. This effectively deletes a whole class
of actions from the system, severely restricting the reachabil-
ity space. However, for many scenarios this interpretation of
policies might be too strong. For example, Alice may want to
include the action PA(x)→A N(x) in order to publish other
pieces of information. For this reason it is useful to consider
weaker interpretations that can still provide some level of
protection. We consider two other notions: plan compliance
and weak plan compliance. We first introduce the weak ver-
sion to motivate the stronger version.

Definition 7 (Weak Plan Compliance) A plan is said to be
weakly compliant if none of the configurations contained in
the plan are critical for any agent.

This interpretation may be appropriate for a set of agents
who are mutually trusting. If a system has a compliant plan
leading to a goal then each agent knows two things. First,
they know that there is plan leading from the initial state to
the goal. Secondly, they know that none of their critical con-
figurations will be reached as long as everybody follows the
plan.

This definition emphasizes the current configuration of
the system. A policy is violated only when a critical con-
figuration is actually reached. This is a big difference from
system compliance in which policies are violated as long as
a critical configuration is reachable. It is not too difficult to
see that a system is compliant if and only if every plan in the
system is weakly compliant.

A natural situation where weak plan compliance might
be appropriate is when Alice uses a credit card to pay for a
meal at a restaurant. She certainly does not want the waiter
to write down her credit card number to use later, but there
is no mechanism in place to prevent the waiter from doing
so. In this scenario Alice can pay for her meal without the
waiter learning her card number, but she must trust him not
to write it down. A proper formalization of this system is
not compliant according to Definition 6, but the system does
have a weakly compliant plan.

In order for the notion of weak plan compliance to be ap-
propriate the agents need to have a level of trust that will
not be present in more sensitive settings, so interpreting the
policies via weak plan compliance may be too weak. For
this reason we introduce our last possible interpretation for
policies which provides an intermediate level of protection
between system compliance and weak plan compliance.

Definition 8 (Plan Compliance) A plan is said to be com-
pliant if it is weakly compliant and if for each agent Ai, and

for each configuration Z contained in the plan, whenever
Z >∗−Ai

V , then V is not critical for Ai.

A compliant plan gives each agent a stronger guarantee
than a weakly compliant plan. Let us consider this guarantee
from the perspective of the single agent A. First, she knows
that the plan itself does not contain any configurations crit-
ical for her because it is also weakly compliant. Secondly,
she knows that starting from any configuration Z in the plan,
all configurations which are reachable from Z using only the
other agents’ actions will also not be critical for her. These
guarantees hold for each agent.

Thus each agent knows that as long she follows the plan
the other agents cannot collude to create a configuration crit-
ical for her. The agents no longer have to trust one another.
As soon as one agent deviates from the plan, the other agents
may choose to stop their participation. They can do so with
the knowledge that the remaining agents will never create a
configuration critical for those agents that aborted.

Such a plan has the flavor of a Nash equilibrium in game
theory. No agent has any incentive to deviate from the given
plan. If agent A does deviate, she only introduces the possi-
bility that the other agents can now collude to create a con-
figuration critical for her, because the guarantee of compli-
ance only exists for the specified plan. Exploring the connec-
tion between Nash equilibria and this current interpretation
of policies is an interesting avenue of investigation, however,
we leave it for future research as it will likely involve some
modifications of our formalism.

The main results of this paper are about the decidability
and complexity of determining if a goal configuration is
reachable in a way which is compliant with all the agents’
policies. There are three computational problems for which
we would like to determine the decidability and complexity,
corresponding to the three interpretations of these policies.

Problem 1: System Compliance. Given a finite set of
propositional actions, a finite set of goal configurations, a fi-
nite set of critical configurations, and an initial configuration
W, determine if the system is compliant, and if so, determine
if there is a plan leading from W to one of the goals.

Problem 2: Weak Plan Compliance. Given a finite set of
propositional actions, a finite set of goal configurations, a
finite set of critical configurations, and an initial configura-
tion W, determine if the system has a weakly compliant plan
leading from W to one of the goals.

Problem 3: Plan Compliance. Given a finite set of propo-
sitional actions, a finite set of goal configurations, a finite set
of critical configurations, and an initial configuration W, de-
termine if the system has a compliant plan leading from W
to one of the goals.
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4 System Compliance

In this section we demonstrate that Problem 1 (system
compliance) is EXPSPACE-complete. The main step on the
way to proving this is to show that the coverability prob-
lem for Petri nets is equivalent to the reachability problem
for local state transition systems (LSTSs). In order to prove
this we rely on reductions both to and from the coverability
problem for Petri nets, which was shown to be EXPSPACE-
hard by Lipton [29], and shown to have an exponential space
algorithm by Rackoff [34]. Both of these results are actu-
ally about vector addition systems [26], but vector addition
systems have been shown to be computationally equivalent
to Petri nets [20, 40]. Because of the well-known corre-
spondence between Petri nets and certain fragments of lin-
ear logic [15, 24], as well as the connection between LSTSs
and linear (affine) logic [21, 16], we only indicate how the
correspondence works at a high level. For completeness we
include the details of the correspondence in Appendix A.
However, to indicate the prominent connections we must first
review some definitions from Petri nets. A number of equiv-
alent definitions exist but we use the ones found in [40].

Petri Nets. A Petri net is a tuple N = (P, T, φ) where P
is a finite set of places, P = {p1, . . . , pk}, T is a finite set
of transitions, T = {t1, . . . , ts}, and φ is a flow function
φ : (P × T ) ∪ (T × P ) → N. A marking µ of the Petri
net is a function µ : P → N which assigns some number
of tokens to each place. For two markings µ, µ′ we write
µ ≥ µ′ whenever µ(p) ≥ µ′(p) for all p ∈ P .

A transition t is enabled at µ if and only if for all p ∈ P ,
φ(p, t) ≤ µ(p). When t is enabled then it may fire by remov-
ing φ(p, t) tokens from each place p and by adding φ(t, p)

tokens to each place p. We then write µ
t→ µ′ where

µ′(p) = µ(p)− φ(p, t) + φ(t, p) for all p ∈ P . (This no-
tation also implies that t is enabled at µ.) Thus the set
{φ(p, t) | p ∈ P} act like pre-conditions for the transition t
and the set {φ(t, p) | p ∈ P} act like post-conditions for the
transition t. A firing sequence σ = t1 . . . tn is enabled at
µ0 if and only if µ0

t1→ µ1
t2→ · · · tn→ µn, for some markings

µ1, . . . , µn. In that case we write µ0
σ→ µn.

A marking µ is reachable from µ0 if ∃σ ∈ T ∗
such that µ0

σ→ µ. The reachability set of a mark-
ing µ0 is R(N,µ0) = {µ | ∃σ ∈ T ∗, µ0

σ→ µ}. The
marking µ is coverable from µ0 if ∃µ′ ∈ R(N,µ0)
such that µ′ ≥ µ. The coverability set of
µ0 is C(N,µ0) = {µ | ∃µ′ ∈ R(N,µ0), µ′ ≥ µ}. The
coverability problem for Petri nets is the following.
Given a Petri net N and two markings µ0, µ1, decide if
µ1 ∈ C(N,µ0).

It is possible to show that the coverability problem for
Petri nets is computationally equivalent to the reachability

for LSTSs. This involves reductions both ways between Petri
nets and LSTSs. The details are given in Appendix A, but we
give a high level description of the correspondence. Roughly,
places of the Petri net correspond to facts of the LSTS (of
which we assume there are only finitely many due to the
finiteness of Σ). Petri net markings µ correspond to LSTS
configurations µ̂. Petri net transitions ti correspond to LSTS
actions t̂i in such a way that if markings µ and µ′ correspond
to configurations µ̂ and µ̂′ respectively, then µ ti→ µ′ if and
only if µ̂>1

t̂i
µ̂′.

The reason we use the coverability problem is because
we LSTS reachability refers to partial configurations. This
allows us to ignore part of a configuration in a way that the
coverability let us ignore extra tokens in a marking. This is
important because if the correspondence had been with the
Petri net reachability problem, the upper bound would be a
lot higher; the best upper bound known for Petri net reacha-
bility is primitive recursive in the Ackermann function.

Using the two translations from Appendix A we get the
following.

Proposition 1 Let µ0 and µ1 be markings of a given Petri
net N , and let µ̂0 and µ̂1 be the corresponding con-
figurations of the LSTS TN constructed from N . Then
µ1 ∈ C(N,µ0) if and only if µ̂0  ∗TN

µ̂1.

Proposition 2 Let µ0 and µ1 be configurations of a LSTS T ,
and let µ̂0 and µ̂1 be the corresponding markings of the Petri
net NT constructed from T . Then µ0  ∗T µ1 if and only if
µ̂1 ∈ C(NT , µ̂0).

Because the reductions are efficient, we conclude that the
LSTS reachability problem has the same complexity as the
Petri net coverability problem. Lipton’s exponential space
lower bound [29] and Rackoff’s exponential space upper
bound [34] combine to imply that the reachability problem
for LSTSs is EXPSPACE-complete. We use the complexity
of the LSTS reachability problem in order to determine the
complexity of Problem 1 (system compliance).

Theorem 1 (System Compliance) Let T be a local state
transition system with a finite set of propositional actions,
Z a finite set of goal configurations, C a finite set of crit-
ical configurations, and W an initial configuration. It is
EXPSPACE-complete to determine if the system is compli-
ant, and if so to determine if there is a plan leading from W
to one of the goal configurations.

Proof. We already achieve EXPSPACE-hardness in the case
where C is empty and Z has a single element Z. This is
simply a direct application of the EXPSPACE-hardness of
goal reachability in local state transition systems.

In order to show EXPSPACE membership we rely on the
fact that EXPSPACE = COEXPSPACE ([38] chapter 8). This
means that given a single critical configuration C, it is pos-
sible to determine in exponential space whether or not C is
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unreachable, that is, whether or not the system is compliant
with respect to C. In order to determine system compliance
with respect to a finite set C = {C1, . . . , Cm} of critical
configurations, we can simply create a process which checks
compliance with each of the configurations in order. If this
process ever determines that the system is not compliant with
respect to some Ci then it outputs “no”. If it determines that
the system is compliant with respect to all of the configu-
rations, then it proceeds to determine if one of the goals is
reachable.

Given the set Z of goal configurations, another process
can determine, in order, whether each configuration is
reachable. If the process finds a goal which is reachable, it
outputs “yes”. If all the goals are unreachable, it outputs
“no”. Since the checks for (non-)reachability are done
sequentially, and each one is performed within exponential
space, the whole process can be performed in exponential
space.

Compare Theorem 1 with the PSPACE result of [21] for
systems with well-balanced actions (see Figure 1). Lifting
the restriction and allowing un-balanced actions causes the
problem to jump from PSPACE to EXPSPACE. Also note
that using the techniques from [21] we can schedule a plan if
one exists without increasing the complexity.

5 Undecidability

In this section we show that General Weak Plan Com-
pliance and General Plan Compliance are both undecidable.
The proof is by reduction from two-counter Minsky ma-
chines. The reduction we use is modeled after a similar
reduction by Kanovich [25] to prove the undecidability of
pure monadic linear logic. There are several key differences
however. First, Kanovich’s proof is about first-order linear
logic, and hence takes advantage of the existential quantifier
to “create new values.” We have no such operator, thus our
proof corresponds more closely to a propositional setting. In
particular, this is not a reduction from Kanovich’s result, but
rather a direct reduction from Minsky machines.

Second, we point out that since our notion of reachabil-
ity refers to partial goals, reachability more closely corre-
sponds to derivability of certain sequents in affine logic as
described in [21]. While full propositional linear logic is
known to be undecidable [28], it has been shown that full
propositional affine logic is decidable [27]. Thus, although
our setting relates to propositional affine logic, the satisfac-
tion of both plan compliance and weak plan compliance dif-
fers enough from simple reachability to affect the decidabil-
ity of the problem.

5.1 Minsky Machines

We use a standard two-counter Minsky machine M of a
certain form. We assume the instructions alternate between
instructions for register 1 and instructions for register 2. In-
structions labeled by ai will be ‘run’ by Alice, instructions
labeled by bj will be ‘run’ by Bob.

Jump ai: goto bj ;
Add ai: r1 := r1 + 1; goto bj ;
Subtract ai: r1 := r1 − 1; goto bj ;
0-test ai: if (r1 = 0) goto bj else goto bk;
Jump bj : goto ak;
Add bj : r2 := r2 + 1; goto ak;
Subtract bj : r2 := r2 − 1; goto ak;
0-test bj : if (r2 = 0) goto ak else goto al;

No two instructions are labeled with the same la-
bel. States a1 and a0 are the initial and final states
of M , respectively. Furthermore, a0 is a halting state
so it is distinct from the label of any of M ’s instruc-
tions. M ’s configuration where M is in state m, and k1
and k2 are the current values of counters r1 and r2, re-
spectively, is denoted by (m; k1, k2). A computation per-
formed by M is a sequence of M ’s configurations such
that each step is made by one of the above instructions:

(a1;n, 0)
a1−→ · · · −→ (ai; k1, k2)

ai−→ (bj ; k
′
1, k
′
2)

bj−→ · · ·
A terminating computation is one that ends in a configura-
tion (a0; ∗, ∗), that is, the final state a0 with any values in the
counters.

Furthermore, for encoding purposes, each instruction of
the form ai : if (r1 = 0) goto bj else goto bk; is replaced by
the following set of instructions:

ai : if (r1 = 0) goto b ̂ else goto bk;
b ̂ : goto aı̂;
aı̂ : goto bj ;

(1)

and each instruction of the form
bj : if (r2 = 0) goto ak else goto al; is replaced by the
following set of instructions:

bj : if (r2 = 0) goto ak̃ else goto al;
ak̃ : goto b ̃;
b ̃ : goto ak;

(2)

where b ̂, aı̂, ak̃, b ̃ are fresh, unique labels. It is important
to note that instructions labeled by b ̂ and aı̂ can be applied
only in a row, and only in the case when the corresponding
value of counter r1 is zero. Similarly instructions labeled by
ak̃ and b ̃ can be applied only in a row, and only in the case
when the corresponding value of counter r2 is zero.

5.2 Minsky Machine Translation

We can now describe how to embed a given Minsky ma-
chine M into a local state transition system which we denote
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TM . The system TM will have two participants, Alice and
Bob. They will each limit their own local configuration to
contain only one fact. Alice will use public tokens to track
the value of register 1, and Bob will similarly track the value
of register 2.

States of agentA are encoded by private propositions: rA,
sA0 , sA1 ,.., sAi ,. . . . States of agent B are encoded by pri-
vate propositions: rB , sB0 , sB1 ,.., sBj ,. . . . A public propo-
sition R1 means that “One public resource unit is allocated
to Alice.” A public proposition R2 means that “One pub-
lic resource unit is allocated to Bob.” A public predicate
C1(x) means “x is the label of an instruction to be run by
Alice”. A public predicate C2(x) means “x is the label of
an instruction to be run by Bob”. M ’s configuration of the
form (ai; k1, k2) is encoded by rA, Rk11 , r

B , Rk22 , C1(ai).
M ’s configuration of the form (bj ; k1, k2) is encoded by
rA, Rk11 , r

B , Rk22 , C2(bj).
Alice’s actions roughly correspond toM ’s instructions on

register one. For every instruction of the form ai : goto bj ;
Alice has the corresponding jump action:

sAi →A rA, C2(bj). (3)

This action does not change the public resources, and it
writes the public fact C2(bj) to tell Bob which instruction
to perform next. Similarly, for every instruction of the form
ai : r1 := r1+1; goto bj ; Alice has the corresponding addi-
tion action:

sAi →A rA, R1, C2(bj). (4)

For every instruction of the form ai : r1 := r1−1; goto bj ;
Alice has the corresponding subtraction action:

sAi , R1 →A rA, C2(bj). (5)

For every instruction of the form
ai : if (r1 = 0) goto b ̂ else goto bk; Alice has two ac-
tions:

sAi →A rA, C2(b ̂) (6)
sAi , R1 →A rA, R1, C2(bk). (7)

Notice that we introduce nondeterminism here. Without any
way of controlling this nondeterminism, an agent may use
action (6) when there is an instance of R1. The machine M
cannot take this direction because M first checks if r1 = 0
and if not, it follows the other branch of the instruction. The
use of critical configurations play an essential role in con-
trolling this nondeterminism as we discuss below. Also note
that although actions of types (3) and (6) have a similar form,
they are differentiated syntactically by their labels. In par-
ticular, actions of type (6) publish one of the distinguished
labels b ̂ that were introduced in construction (1).

Finally, Alice has an action that does not directly corre-
spond to any ofM ’s instructions. This action explicitly links

the labels ai with the corresponding propositions sAi . For
each corresponding pair, Alice has the receive action

rA, C1(ai) →A sAi (8)

in which Alice reads the label of an instruction from the net-
work and enters a state ready to perform that instruction.

Bob has actions on his side that correspond to instructions
on M ’s register 2. For completeness, we list those actions in
the corresponding order below.

sBj →B rB , C1(ak) (9)

sBj →B rB , R2, C1(ak) (10)

sBj , R2 →B rB , C1(ak) (11)

sBj →B rB , C1(ak̃) (12)

sBj , R2 →B rB , R2, C1(al) (13)

rB , C2(bj) →B sBj (14)

Thus associated to any Minsky machine M is the local
state transition system TM with actions of types (3)–(14).
The initial configuration of M is (a1;n, 0) and the corre-
sponding initial configuration of TM is rA, Rn1 , r

B , C1(a1).

In order to fully specify the problem of finding a com-
pliant or a weakly compliant plan we must describe what
the goal configurations and confidentiality policies are. We
specify a single goal of C1(a0). This simply corresponds to
an accepting state of M . Thus any configuration containing
C1(a0) is a goal configuration. We need to take some care
in choosing what confidentiality policies to use because they
will be used to control the potentially undesirable behavior
caused by the nondeterminism introduced in the translation
of the 0-test instructions. If we do not specify any policies
(or specify the empty policies) then the translation will not
be faithful. That is, a plan might follow action (6) when there
is an instance of R1.

We choose critical configurations which designate this be-
havior as undesirable. Namely, Alice’s critical configura-
tions are those of the formC1(a ı̂), R1 and Bob’s critical con-
figurations are those of the form C2(b̃), R2 where a ı̂ and b̃
are the fresh unique labels from constructions (1) and (2) re-
spectively. Intuitively, since the labels a ı̂ and b̃ should only
occur when r1 = 0 and r2 = 0 respectively, these critical
configurations serve as a signal that the wrong branch was
taken in a plan. Thus if compliant plans and weakly compli-
ant plans are supposed to accurately represent machine com-
putations, they should never reach these configurations.

Notice that these critical configurations do not take full
advantage of the expressive power of confidentiality policies.
In particular they consist only of public facts. This means
that both Alice and Bob can recognize when a configuration
is critical for either agent. We show undecidability even in
this more restrictive case.
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It remains to show that this translation allows TM to faith-
fully simulate terminating computations ofM . The next sub-
section provides the necessary soundness and completeness
results.

5.3 Soundness and Completeness

In this section we show that, under our translation of Min-
sky machines into LSTSs (with confidentiality policies), the
machineM has a terminating computation on (a1;n, 0) lead-
ing to (a0; ∗, ∗) if and only if TM has a weakly compliant
plan leading from rA, Rn1 , r

B , C1(a1) to C1(a0) if and only
if TM has a compliant plan leading from rA, Rn1 , r

B , C1(a1)
to C1(a0).

We first show the soundness of our translation with re-
spect to plan compliance. Since plan compliance implies
weak plan compliance the corresponding soundness result
with respect to weak plan compliance is an immediate corol-
lary. We then show completeness of the translation with re-
spect to weak plan compliance. Again, since plan compli-
ance implies weak plan compliance, we get the completeness
with respect to plan compliance as an immediate corollary.

Proposition 3 (Soundness) Given a Minsky machine M
and its translation TM , if M ’s computation on (a1;n, 0) ter-
minates in (a0; ∗, ∗), then TM has a compliant plan leading
from rA, Rn1 , r

B , C1(a1) to the partial goal C1(a0).

Proof. We show that whenever M and TM are in cor-
responding configurations, if M ’s instructions lead to a
configuration of the form (si; k1, k2), then TM can reach the
corresponding configuration which represents (si; k1, k2).
We then show that the resulting plan is compliant. The
argument proceeds by induction on the length of the M -
computation with the basis step being an M -computation of
only 1 step. (The 0-step case is trivial.)

Basis Step: (ai; k1, k2)→1
M (bj ; k

′
1, k
′
2)

We examine each possible instruction that M might
perform.

Case: ai: goto bj;
M goes from (ai; k1, k2) to (bj ; k1, k2). Then TM satis-

fies

rA, Rk11 , r
B , Rk22 , C1(ai) >∗ rA, Rk11 , r

B , Rk22 , C2(bj)

by applying a receive action of type (8) followed by a jump
action of type (3). Notice that the configuration on the right
represents the configuration (bj ; k1, k2) as desired.

Case: ai : r1 := r1 + 1; goto bj;
M goes from (ai; k1, k2) to (bj ; k1 + 1, k2). Then TM

satisfies

rA, Rk11 , r
B , Rk22 , C1(ai) >∗ rA, Rk1+1

1 , rB , Rk22 , C2(bj)

by applying a receive action of type (8) followed by an
addition action of type (4). Notice that the configuration
on the right represents the configuration (bj ; k1 + 1, k2) as
desired.

Case: ai : r1 := r1 − 1; goto bj;
M goes from (ai; k1, k2) to (bj ; k1 − 1, k2). Since M

can perform this instruction we know that k1 > 0. Thus TM
satisfies

rA, Rk11 , r
B , Rk22 , C1(ai) >∗ rA, Rk1−11 , rB , Rk22 , C2(bj)

by applying a receive action of type (8) followed by a
subtraction action of type (5) (which is applicable because
k1 > 0). Notice that the configuration on the right represents
the configuration (bj ; k1 − 1, k2) as desired.

Case: ai: if (r1 = 0) goto b ̂ else goto bk;
M goes from (ai; k1, k2) to either (b ̂; k1, k2) if k1 = 0

or (bk; k1, k2) if k1 > 0. In the first case TM satisfies

rA, Rk11 , r
B , Rk22 , C1(ai) >∗ rA, Rk11 , r

B , Rk22 , C2(b ̂)

by applying a receive action of type (8) followed by an action
of type (6). In the latter case, TM satisfies

rA, Rk11 , r
B , Rk22 , C1(ai) >∗ rA, Rk11 , r

B , Rk22 , C2(bk)

by applying a receive action of type (8) followed by an
action of type (7) (which is enabled because k1 > 0
in this case). Notice that the configurations on the right
represent (b ̂; k1, k2) and (bk; k1, k2) respectively as desired.

We conclude that any single instruction on M ’s register 1
can be simulated by TM ’s actions. As stated above, the cases
in which M ’s instruction modifies register 2 are completely
analogous, and so we omit the details here.

Induction Step: This follows immediately from the induc-
tive hypothesis by splitting a length n computation into a
length n − 1 computation followed by a length 1 computa-
tion. Therefore computations of any length can be simulated
by TM . In particular, if (a1;n, 0)→∗M (a0; ∗, ∗) then we can
conclude that TM satisfies

rA, Rn1 , r
B , C1(a1)  ∗ C1(a0).

We must now show why this plan is compliant. Recall that
Alice’s critical configurations are of the form C1(a ı̂), R1

where a ı̂ is the label which appears only in an instruction se-
quence resulting from the transformation (1). We first show
why none of the configurations in the plan are critical. Every
configuration of the form rA, Rk11 , r

B , Rk22 , C1(a ı̂) in the
plan corresponds to a configuration (a ı̂; k1, k2) along M ’s
computation. We remarked at the end of Section 5.1, that
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this only happens when k1 = 0. Thus none of the configu-
rations of the plan are critical for Alice. A similar argument
shows none of the configurations are critical for Bob.

Now suppose that Bob tries to deviate from the plan to
create a configuration which is critical for Alice. Without
loss of generality we may assume he starts from a configura-
tion of the form rA, Rk11 , r

B , Rk22 , C2(bj).
He must create a fact C1(a ı̂) (with a distinguished label)

in order to succeed. By inspection we can see that Bob can
only do this if bj = b ̂. But that means that the machine
configuration is (b ̂; k1, k2) which we already remarked
happens only when k1 = 0. Thus, if Bob succeeds in
creating the fact C1(a ı̂) it means that there are no instances
of R1 in the configuration, and the result is not critical for
Alice. A similar argument shows that Alice cannot create a
critical configuration for Bob by herself, if she starts from a
configuration in the plan.

Thus the translation is sound with respect to both plan
compliance and weak plan compliance. In order to show
that the translation is complete, we show that an arbitrary
weakly compliant plan leading from rA, Rn1 , r

B , C1(a1) to
C1(a0) corresponds to the terminating computation of M on
(a1;n, 0). This direction requires some care because we do
not know a priori that a weakly compliant plan has a form
which clearly corresponds to a computation of M . Thus we
first show that weakly compliant plans do have a nice form
passing only through configurations which we call regular.

Definition 9 If TM is the translation of a Minsky machine
M , then a configuration is called regular if it has one of the
four following forms:

rA, Rk11 , r
B , Rk22 , C1(ai) (I)

sAi , R
k1
1 , r

B , Rk22 (II)

rA, Rk11 , r
B , Rk22 , C2(bj) (III)

rA, Rk11 , s
B
j , R

k2
2 (IV)

Configurations of type (I) and (III) correspond directly to
Minsky machine configurations as we saw before. Configu-
rations of type (II) and (IV) are the “intermediate” config-
urations that arise from the use of the receive actions (8)
and (14). In the previous proof, every configuration of the
plan was regular. The next lemma states that this must be the
case for every plan which starts in a regular configuration.

Lemma 1 Let TM be the translation of a Minsky machine
M . If TM begins in a regular configuration then every con-
figuration in a plan is also regular. Furthermore, the con-
figurations cycle through types (I), (II), (III) and (IV) in that
order.

Proof. The full proof requires a case analysis on each type
of regular configuration. For example, if a system in a

configuration of type (I), then by inspection of the actions,
we see that any action which is enabled will transform the
configuration into a configuration of type (II). The other
cases are proved by a similar inspection of the actions which
we omit here for reasons of space.

Using this result we can now show how to simulate an
arbitrary weakly compliant plan by a computation of M .

Proposition 4 (Completeness) Given a Minsky machine M
and its translation TM , if TM has a weakly compliant plan
leading from rA, Rn1 , r

B , C1(a1) to C1(a0) then M ’s com-
putation leads from (a1;n, 0) to (a0; ∗, ∗).

Proof. We prove more generally that if the weakly
compliant plan leads from rA, Rn1 , r

B , C1(a1) to
rA, Rk11 , r

B , Rk22 , C1(ai) then M ’s computation leads
from (a1;n, 0) to (ai; k1, k2). Since rA, Rn1 , r

B , C1(a1)
is a regular configuration, Lemma 1 implies that the plan
proceeds to enter a cycle of regular configurations. Since a
regular configuration which contains C1(ai) is of type (I)
we know that the plan must start and end in a configuration
of type (I) and therefore must consist of some number of
complete cycles (and no partial cycles). We prove the result
by induction on the number of cycles in the plan. Recall that
a full cycle consists of four actions, two actions from Alice
followed by two actions from Bob.

Basis Step: 0 Cycles
If the plan has 0 cycles then it starts in the ending state

and hence a1 = ai, n = k1 and k2 = 0 so M also starts in
the configuration (ai; k1, k2).

Induction Step:
The inductive hypothesis is that a weakly compliant plan

with n−1 cycles can be simulated by anM -computation. We
must then show that an n-cycle plan can also be simulated by
an M -computation.

After the first n− 1 cycles of the plan, TM is in a regular
configuration of type (I) that looks like the following:

rA, Rk11 , r
B , Rk22 , C1(ai)

By the inductive hypothesis we know that M leads to the
corresponding configuration (ai; k1, k2). We must only
show how M simulates the last cycle of the plan. By
Lemma 1 we know that the cycle begins with a receive
action of type (8) followed by an action of one of the
types (3)–(7).

Case I:
Alice applies a receive action followed by an action of

type (3). This transforms TM into a configuration of the form

rA, Rk11 , r
B , Rk22 , C2(bj).
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Since the second action is of type (3), the label ai is the label
for a jump instruction, and M can apply the instruction and
end up in the configuration (bj ; k1, k2) which is represented
by TM ’s resulting configuration.

Case II:
Alice applies a receive action followed by an action of

type (4). This transforms TM into a configuration of the form

rA, Rk1+1
1 , rB , Rk22 , C2(bj).

Since the second action is of type (4), the label ai is the label
for an addition instruction, and M can apply the instruction
and end up in the configuration (bj ; k1 + 1, k2) which is
represented by TM ’s resulting configuration.

Case III:
Alice applies a receive action followed by an action of

type (5). This transforms TM into a configuration of the form

rA, Rk1−11 , rB , Rk22 , C2(bj).

Since the second action is of type (5), the label ai is the label
for a subtraction instruction. Since TM ’s action requires the
existence of an occurrence of R1 we are guaranteed that
k1 > 0. Thus M can successfully apply the instruction
and end up in the configuration (bj ; k1 − 1, k2) which is
represented by TM ’s resulting configuration.

Case IV:
Alice applies a receive action followed by an action of

type (6). This transforms TM into a configuration of the form

rA, Rk11 , r
B , Rk22 , C2(b ̂).

Since the second action is of type (6), the label ai is the
label for a 0-test instruction. Furthermore, we know there
are no occurrences of R1 because the plan is assumed to be
weakly compliant. An occurrence of R1 would cause the
cycle to finish with Bob publishing the fact C1(a ı̂) creating
a critical configuration contrary to the weak compliance of
the plan. Thus k1 = 0 and M ’s previous configuration is
actually (ai; 0, k2). Hence M ’s test for 0 in register 1 is
successful. M then ends up in the configuration (b ̂; 0, k2)
which is represented by TM ’s resulting configuration.

Case V:
Alice applies a receive action followed by an action of

type (7). This transforms TM into a configuration of the form

rA, Rk11 , r
B , Rk22 , C2(bk).

Since the second action is of type (7), the label ai is
the label for a 0-test instruction. Furthermore, we know
k1 > 0 because the action is only enabled when there is an
occurrence of R1. Thus when M performs the 0-test, it finds

k1 > 0 and transitions into the configuration (bk; k1, k2)
which is represented by TM ’s resulting configuration.

The cycle is completed by Bob applying a receive
action of type (14) followed by an action of one of the
types (9)–(13). The analysis of each of these cases is
completely analogous to the previous cases completing the
induction. We therefore conclude that M can simulate any
weakly compliant plan which completes some number of
full cycles. In particular, if the weakly compliant plan leads
from rA, Rn1 , r

B , C1(a1) to C1(a0), then M ’s computation
leads from (a1;n, 0) to (a0; ∗, ∗).

Since every compliant plan is also weakly compliant, it
follows that the translation is complete with respect to plan
compliance as well. The soundness and completeness results
combine to imply that Problem 2 (weak plan compliance)
and Problem 3 (plan compliance) are both undecidable.

Theorem 2 (Weak Plan Compliance) Let T be a local
state transition system with a finite set of propositional ac-
tions, Z a finite set of goal configurations, C a finite set of
critical configurations, and W an initial configuration. The
problem of determining if T has a weakly compliant plan
leading from W to one of the goal configurations is undecid-
able.

Proof. The translation from Minsky machines creates a
local state transition system TM with only finitely many
propositional actions, a single goal configuration, and a
finite set of critical configurations. The soundness and
completeness of the translation imply the undecidability of
the problem.

Theorem 2 is in contrast with the PSPACE result of [21]
for weak plan compliance when the actions are restricted to
be well-balanced (see Figure 1). Allowing un-balanced ac-
tions alters the decidability of the problem. Also note that
in the well-balanced case, system compliance and weak plan
compliance have the same complexity, but in the general case
system compliance is decidable and weak plan compliance
becomes undecidable. Therefore, the undecidability arises
from a combination of the presence of un-balanced actions
and the importance of current configurations as embodied by
the definition of weak plan compliance.

Theorem 3 (Plan Compliance) Let T be a local state tran-
sition system with a finite set of propositional actions, Z a
finite set of goal configurations, C a finite set of critical con-
figurations, and W an initial configuration. The problem of
determining if T has a compliant plan leading from W to
one of the goal configurations is undecidable.

Proof. This proof is identical to the proof of Theorem 3.
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We also want to point out the differences between Theo-
rems 2 and 3 and the undecidability results of [13] and [25].
The results of [13] are about secrecy in the context of secu-
rity protocols with an external intruder who has considerably
more power than the honest protocol participants. In that set-
ting, undecidability is only attained with the ability to create
an unbounded number of fresh values, or nonces, combined
with the unbounded memory of the intruder. In the current
work, we take advantage of the unbounded memory of the
agents by allowing un-balanced actions, but we work in a
propositional setting in which no new values are ever cre-
ated.

Similarly, the proof of undecidability for pure monadic
linear logic [25] relies on the ability to use the existential
quantifier to create an unbounded number of new values.
Also, linear logic derivability roughly correspond to exact
reachability in our setting. We lose some control by using
our weaker notion of reachability, and by not allowing new
values to be created, but we regain that control through the
interpretation of confidentiality policies.

6 Related Work

We are certainly not the first to consider security in a
collaborative setting. For example, other authors have an-
alyzed privacy aspects of algorithms designed to collabora-
tively schedule meetings as well as other related distributed
constraint optimization problems [19, 18]. Instead of focus-
ing on policy compliance, these papers examine several met-
rics to measure the amount of privacy lost in various algo-
rithms.

In [1, 10] the authors present a model that accounts for
three types of participants: Byzantine, altruistic and ratio-
nal. This is a framework meant to design and analyze proto-
cols and processes in which some agents act in their own self
interest, some can act in arbitrary ways, and some follow
a deterministic set of instructions. The concept is general,
but the incentives depend on the specific instance. Analyses
are carried out on a case by case basis. At a more abstract
level, [39] characterizes boolean functions that can be non-
cooperatively computed. These are functions for which the
participants will honestly state their input values to a cen-
tral, trusted algorithm, assuming the agents care more about
learning the outcome of the function than the input values of
other agents. All of these papers incorporate explicit util-
ity functions. While these differ from our confidentiality
policies in detail, they represent similar confidentiality con-
straints that must be satisfied by “successful” executions.

A general, formal model for privacy is presented in [4, 5]
called Contextual Integrity. The authors focus on more than
just confidentiality. They consider more general norms for
the appropriate transmission of information. They consider
both positive and negative norms which respectively gener-
alize “allow” and “deny” rules in traditional access control.

As the name suggests, the authors also emphasize the impor-
tance of context in determining which norms are applicable
in a given situation. This determination may be imposed ex-
ternally by law, or internally in the form of company privacy
policies. Indeed the importance of context was brought to
our attention by these papers.

While our notion of confidentiality depends on reaching
a particular configuration or not, other notions have been
considered which focus on an adversary’s ability to distin-
guish between two traces. For example [2, 3] define se-
crecy in this way. This is very much in the spirit of non-
interference [32, 35, 17, 31] in which secret, or High, vari-
ables should not leak to public, or Low, variables. These dis-
tinctions tend to be static and absolute, which makes them
inflexible and hard to adapt to different contexts. Further-
more, the focus is on the past value of certain variables, while
our confidentiality policies have the ability to express knowl-
edge of the current configuration. Declassification must be
handled very carefully in this setting [32, 36, 33].

We also point out that there may be strong connections be-
tween our complexity and undecidability results, and similar
results from AI planning. The complexity of the planning
problem has been shown to be sensitive to changes in the de-
tails of the problem statement [14, 9] regarding the use of
function symbols, deletion lists and negative pre-conditions.
We have not explored the possible connections and equiv-
alences between the problems of this work and problems in
classical planning. In a similar vein, the authors of [37] mod-
ify linear logic to incoporate constraints that correspond to
the more continuous aspects of traditional planning problems
that one encounters in the real world.

Our formalism also shares some similarities with the
Dolev-Yao model of security protocols [12, 13] in which a
powerful intruder tries to disrupt communication between
honest protocol participants. Our framework differs from
the Dolev-Yao model by considering evenly matched agents
who can loop and who may have unbounded memory. Also,
agents in the Dolev-Yao model can create fresh values or
nonces, whereas we have not yet provided for that possibil-
ity in our framework. Our model is closer in spirit to the
Dolev-Yao model of contract signing protocols [7, 8] if all
participants are “optimistic”.

7 Conclusion and Future Work

In this paper we have explored three notions of policy
compliance on top of the underlying model of local state
transition systems. Those three interpretations are system
compliance, weak plan compliance, and plan compliance.
Since the level of trust among collaborating agents may dif-
fer depending on the agents and the context, each interpre-
tation of the agents’ confidentiality policies is appropriate
for a different level of trust among the agents. In contrast
to our previous work, our current focus was on determining
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the decidability and complexity of policy compliance and
goal reachability in the general case with un-balanced ac-
tions. We showed that the collaborative planning problem
with system compliance is EXPSPACE-complete. Also, the
collaborative planning problem with weak plan compliance
and the collaborative planning problem with plan compliance
are both undecidable. This undecidability is due to the im-
portance of the current configuration of the system in both
versions of plan compliance. This is in contrast with other
undecidability results in the security literature [13] which re-
quire the creation of fresh values.

Looking towards possible directions of future research,
we note that the computational problems considered in this
paper require full information about each agent’s actions and
policies. As a participant in the collaboration, however, one
would like to be able to make some local assessment of the
confidentiality guarantees provided by the system. One ad-
vantage to this approach is that each agent could choose the
interpretation of their confidentiality policy that best suits
their needs. It may be that methods from mechanism de-
sign can help to decentralize the analysis. Such an approach
is likely to entail the introduction of explicit utility functions
and incentives to the model. This may be the right setting
in which to explore connections between the definition of
plan compliance and types of Nash equilibria as mentioned
in Section 3.

Some other directions aim at increasing the expressibil-
ity of the model. Many algorithms and protocols require the
use of random values or fresh values. In the past, the use of
the existential quantifier has proven successful as a tool for
modeling them [13]. We would like to explore the complex-
ity of the three problems discussed in this paper, in both the
unbalanced and well-balanced cases, when existentials are
used.

It would be interesting to consider lifting some of the re-
strictions about the locality of the actions. Namely, we might
consider restrictions that correspond to “read” and “write”
privileges with the structure of a lattice [11]. The extra struc-
ture could be potentially useful for more natural models of
communication and for expressing even richer confidential-
ity policies.

The confidentiality policies we use in this paper do not
place any explicit restrictions on the actions. Many real-
world policies have rules about when an agent may or must
perform an action and when an action is prohibited. We may
be able to express such policies by imposing parametric con-
ditions on the actions, including boolean conditions. This
would allow the model to align more closely with real-world
scenarios. Similarly, we might be able to introduce parame-
ters that help determine the context. Currently each context
has a corresponding transition system. Parameters could de-
termine which actions are available and which configurations
are critical, allowing the model to consider the impact on an
agent of changing contexts in various ways.

Finally, time can be an important factor in some places
like financial institutions. Using an asynchronous model
such as the one in this paper is not well-suited to these
time-sensitive situations. We want to explore a similar syn-
chronous model which has some notion of explicit time. We
believe this could provide a rich exploration of confidential-
ity concerns which are not expressible in the current model.
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A Reductions Between Petri nets and LSTSs

In this appendix we give the details of the correspondence
between the Petri net coverability problem and the LSTS
reachability problem.

A.1 Reduction from Petri nets to LSTSs

Let N = (P, T, φ) be a Petri net. We will associate a
LSTS TN to this Petri net. For each place pi we will include a
propositional constant (0-ary predicate) Fi in the signature of
TN . For any marking µ of N we associate the configuration

µ̂ = F
µ(p1)
1 , . . . , F

µ(pk)
k .

For each transition ti we include the (propositional) action

t̂i = F
φ(p1,ti)
1 , . . . , F

φ(pk,ti)
k → F

φ(ti,p1)
1 , . . . , F

φ(ti,pk)
k .

This action is enabled in a configuration µ̂ iff
µ̂(pj) ≥ φ(pj , ti) for all 1 ≤ j ≤ k iff ti is enabled in
µ. Thus the result of applying this action to the configura-
tion µ̂ is

µ̂′ = F
µ(p1)−φ(p1,ti)+φ(ti,p1)
1 , . . . , F

µ(pk)−φ(pk,ti)+φ(ti,pk)
k

15



where µ ti→ µ′.
Note that TN has finitely many propositional actions. No-

tice also that the size of the LSTS reachability problem (as
measured by the total length of the binary descriptions of
the actions, and the initial and final configurations) is of the
same order as the size of the Petri net coverability problem
(measured by the total length of the binary descriptions of the
flow function and the initial and final markings). Under ap-
propriate binary encodings this translation can be performed
in polynomial time.

Proposition 5 Under the above translation, µ1 ∈ C(N,µ0)
if and only if µ̂0  ∗TN

µ̂1.

Proof.We start with the forward direction. The proof is by
induction on the length of the firing sequence σ which satis-
fies µ0

σ→ µ such that µ ≥ µ1. The basis case of length 0 is
trivial.
Induction Step:

Suppose that if µ is coverable from µ0 via a firing
sequence of length n then µ̂0  ∗TN

µ̂. Suppose also that µ1

is coverable from µ0 via a firing sequence of length n + 1.
Then there are markings µ, µ′ such that µ0

σ→ µ
ti→ µ′

where σ is a firing sequence of length n and µ′ ≥ µ1. By
the inductive hypothesis, µ̂0  ∗TN

µ̂. It is easy to check that

since µ ti→ µ′, we also get that µ̂>1
ti µ̂
′. Also since µ′ ≥ µ1

we know that µ̂′ contains µ̂1. Thus, µ̂  ∗TN
µ̂1. It is easily

seen that  ∗TN
is a transitive relation, thus µ̂0  ∗TN

µ̂1

as desired. This completes the proof of the forward direction.

We now look at the other direction. The proof is by induc-
tion on the length of the sequence of actions which witnesses
µ̂0  ∗TN

µ̂1. The basis case of a length 0 sequence is trivial.
Induction Step:

Suppose that if µ̂0  n
TN

µ̂ then µ ∈ C(N,µ0). Suppose
also that µ̂0  

n+1
TN

µ̂1. Then there is a configuration µ̂ such
that µ̂0  n

TN
µ̂  1

t̂i
µ̂1. By the inductive hypothesis we

know that µ ∈ C(N,µ0). Also, by definition, there is a
configuration µ̂′ such that µ̂ >1

t̂i
µ̂′ and µ̂′ contains µ̂1. It is

easy to check that µ ti→ µ′ and µ′ ≥ µ1. Thus µ1 ∈ C(N,µ).
It is not too difficult to see that coverability is transitive and
so µ1 ∈ C(N,µ0) as desired.

A.2 Reduction from LSTSs to Petri Nets

Suppose we are given a LSTS T with finitely many
propositional actions, and two configurations µ0 and µ1.
Then there are only finitely many facts which can appear in
any plan: those facts in the configurations µ0 and µ1 and
those facts mentioned in one of the actions. Suppose there
are k facts total, and for convenience let us rename them
F1, . . . , Fk. Then we will associate to this LSTS a Petri
net NT = (P̂ , T̂ , φ) with places P̂ = {p1, . . . , pk}. Any

configuration of the form µ = Fµ
1

1 , . . . , Fµ
k

k corresponds
to a marking of the Petri net µ̂ such that µ̂(pi) = µi for
1 ≤ i ≤ k.

If T has actions {t1, . . . , ts} then the Petri net NT will
have transitions T̂ = {t̂1, . . . , t̂s}. If the action ti is

ti : F
t−i,1
1 , . . . , F

t−i,k
k → F

t+i,1
1 , . . . , F

t+i,k
k

where t−i,j , t
+
i,j ∈ N for all 1 ≤ j ≤ k, then φ satisfies

φ(pj , t̂i) = t−i,j and φ(t̂i, pj) = t+i,j for all 1 ≤ j ≤ k.
Then action ti is enabled in configuration µ if and only if
t−i,j ≤ µj for all 1 ≤ j ≤ k if and only if transition t̂i is

enabled in marking µ̂. Note also that µ>1
ti µ
′ iff µ̂ t̂i→ µ̂′.

Notice that the size of the Petri net coverability problem is
of the same order as the size of the LSTS reachability prob-
lem. Under an appropriate binary encoding the translation
can be performed in polynomial time.

Proposition 6 Under the above translation, µ0  ∗T µ1 if
and only if µ̂1 ∈ C(NT , µ̂0).

Proof. We start with the forward direction. The proof is by
induction on the length of the sequence of actions witnessing
µ0  ∗T µ1. The basis case of a length 0 sequence is trivial.
Induction Step:

Suppose that if µ0  n
T µ then µ̂ ∈ C(NT , µ̂0). Suppose

also that µ0  
n+1
T µ1. Then there is a configuration µ

such that µ0  n
T µ  1

ti µ1. By the inductive hypothesis
µ̂ ∈ C(NT , µ̂0). Also, by definition, there is a configuration
µ′ such that µ >1

ti µ
′ where µ′ contains µ1. It is easy to

check that µ̂ t̂i→ µ̂′ and µ̂′ ≥ µ̂1. Thus µ̂1 ∈ C(NT , µ̂). By
the transitivity of coverability we see that µ̂1 ∈ C(NT , µ̂0)
as desired.

We now consider the other direction. The proof is by
induction on the length of the firing sequence σ̂ such that
µ̂0

σ̂→ µ̂ with µ̂ ≥ µ̂1. The basis case of a length 0 firing
sequence is trivial.
Induction Step:

Suppose that if µ̂ is coverable from µ̂0 in n steps then
µ0  ∗T µ. Suppose also that µ̂1 is coverable from µ̂0 in
n + 1 steps. Then there are markings µ̂ and µ̂′ such that

µ̂0
σ̂→ µ̂

t̂i→ µ̂′ with µ̂′ ≥ µ̂1 and σ̂ a firing sequence of
length n. Then by the inductive hypothesis µ0  ∗T µ. It is

also easy to see that since µ̂ t̂i→ µ̂′ then µ>1
ti µ
′, and since

µ̂′ ≥ µ̂1 we know that µ′ contains µ1. Thus µ  ∗T µ1.
By the transitivity of  ∗T we conclude that µ0  ∗T µ1 as
desired.
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