
Limitations on Observability of Effects
in Cyber-Physical Systems∗

Suresh K. Damodaran

MITRE

Bedford, MA

sdamodaran@mitre.org

Paul D. Rowe

MITRE

Bedford, MA

prowe@mitre.org

ABSTRACT
Increased interconnectivity of Cyber-Physical Systems, by design

or otherwise, increases the cyber attack surface and attack vectors.

Observing the effects of these attacks is helpful in detecting them.

In this paper, we show that many attacks on such systems result in a

control loop effect we term Process Model Inconsistency (PMI). Our

formal approach elucidates the relationships among incomplete-

ness, incorrectness, safety, and inconsistency of process models.

We show that incomplete process models lead to inconsistency.

Surprisingly, inconsistency may arise even in complete and correct

models. We illustrate our approach through an Automated Teller

Machine (ATM) example, and describe the practical implications of

the theoretical results.
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1 INTRODUCTION
Cyber-Physical Systems can range from industrial control systems

(ICS) to Internet of Things (IoT) systems, and encompass a wide

variety of protocols, buses, and networks. While the definition of

a Cyber-Physical System (CPS) is still evolving, we assume a CPS

consists of interacting networks of physical devices and computa-

tional components that may be remotely controlled [16]. While an

earlier CPS may have been designed as a stand-alone and isolated

system, modern CPS are designed with connectivity assumptions.

For example, the three-tier architecture for modern IoT systems

described in [19] makes connectivity assumptions explicit. Due

to intentional or unintentional network connectivity through the

Internet or other means, no CPS can be assumed to be isolated. The
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consequence of the increased interconnectivity among the systems

is the addition of new cyber attack surfaces, and vulnerabilities

exploitable with new or existing attack vectors.

To detect an attack, or evaluate the effect of an attack on a system,

accurately observing the system state is very useful. A key question

in this context is, "are there limitations on the observability of the

system state that reduce the ability to conclude that an attack is

happening or has happened?" Our main contribution in this paper is

an answer to this question. We define Process Model Inconsistency

(PMI) effect, and establish how PMI can be manifested as a result of

several attacks identified in the literature (Section 3). In Section 4 we

prove the limitations on observability of PMI effects. We illustrate

how PMI effects may be masked with an example in Section 5. In

Section 5.1, we describe practical implications of limitations on

observability, and we conclude in Section 6.

2 RELATEDWORKS
An effect is a consequence of an attack. Distinct attacks may result

in the same effect. This implies there could be physical effects as

a result of cyber attacks, and there could also be cyber effects on

system components as a result of physical attacks. For example, a

tampered tire pressure gauge may show low tire pressure indicator

on the dashboard of a car, while there is perfectly adequate tire

pressure. Cyber effects can manifest in various domains, ranging

from political instability to accidents. Ormrod et al. [23] present a

System of Systems (SoS) cyber effects ontology that attempts to cap-

ture the breadth of cyber effects across physical, virtual, conceptual,

and event domains within the context of a battle. The cyber effects

on human decision making, originating from passive and active

cyber attacks, is studied by Cayirci et al. [6]. Huang et al. have

analytically assessed the physical and economical consequences of

cyber attacks [13].

The physical effects on a CPS vary widely depending on the

system and where the CPS is used, and therefore are difficult to

categorize. In contrast, the cyber effects are relatively easier to

categorize. The following categories of cyber effects are identified

for Army combat training: Denial of Service (DoS), Information

Interception, Information Forgery, and Information Delay [20]. The

cyber effects on the controller of the physical process change the

operations of the process control system and the physical process

in subtle ways. For process control systems, the security and pro-

tection of information is not enough, and it is necessary to see how

the attacks affect estimation and control algorithms of a CPS, thus

directly changing the physical world [4]. Han et al. [11] describe

more obvious effects of cyber attacks such as draining out limited

power of sensors, disrupted or incorrect routing, desynchronization,

and privacy invasion through eavesdropping. Wardell et al. [29] add

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: CPS Control Loop

changing of set points, sending harmful control signals, changing

operator display to the list of effects. Cardenas et al. [5] describe

physical attacks on sensors, actuators, or on the physical plant,

deception attacks carried through the compromises of sensors and

actuators, and DoS attacks that make signals unavailable to the con-

troller or physical process. The effects of these attacks to the system

could be missing or altered signals. Mitchel and Chen [21] specify

three types of failures in the context of modern power grids: attri-
tion failure when there are insufficient actuators or control nodes

to apply control, pervasion failure when the failed actuators and

control nodes collude, and exfiltration failure when the adversary

obtains the grid data. Some of these cyber effects could also deceive

a human operator who is part of the decision making process of

the controller [29].

Developing a behavior model for a non-trivial CPS is a challeng-

ing problem because of the diversity of the system components, the

phases of operations, and the need to reconcile the control, phys-

ical, software, and hardware models. Rajhans et al. [26] provide

a framework to integrate heterogeneous aspects of a system into

a consistent verifiable behavior model. This problem is worsened

in practice due to the unavailability of any documented specifica-

tions for some system components. Pajic et al. [24] discuss resilient

statistical state estimation techniques while under attack as part

of the DARPA HACMS project. Ability to sufficiently observe the

properties of the CPS in operation is a requirement for accurate

state estimation.

CPS effects have been analyzed by modeling a CPS as a multi-

layered system with physical, sensor/actuator, network, and control

layers [2, 11]. Alternately, CPS effects have been also studied by

modeling it as a control system [5, 10, 22]. The control system based

modeling approach opens up specific ways to identify cyber effects

and link them to attacks, as discussed in the next section.

3 PROCESS MODEL INCONSISTENCY
Clark and Wilson have argued [7] that external consistency, the
correspondence between the data object and the real object it repre-

sents, is an important control to prevent fraud and error. An attack

may cause a change in the system that we term an effect. An effect

may cause other changes in the system that we term derived effects.
In this section, we show why process model inconsistency is an

important derived effect on CPS through a control loop based anal-

ysis of cyber and physical effects. In Section 3.1, we describe the

control loop view of CPS. We map the cyber and physical effects to

derived effects to control loop elements, and show in Section 3.2

that inconsistency of process model is an important category of

effect to a control loop.

3.1 Control Loop View of CPS
A control loop, as shown in Figure 1, is a significant and discernible

feature of any non-trivial CPS. A CPS that is a SoS may contain

multiple such control loops that span multiple subsystems [15].

Figure 1 describes a simplified control loop derived from the de-

scriptions of a control loop used for safety analysis [17] and security

analysis [22].

The controller in Figure 1 can include humans, or can be a fully-

automated system, or it can be a semi-automated system with

humans-in-the-loop. Stated differently, a human can be considered

a part of the controller. Humans may also be participants in the

controlled process, responsible for providing sensory inputs to the

controller. The controller may include estimation algorithms and

controlling algorithms [5]. The controller receives inputs from exter-

nal entities such as set points, or other commands such as resets. All

controllers must maintain a model of the controlled process, called a

process model, within [17]. The dynamic behavioral aspects of the

model are constructed and maintained by the controller by process-

ing themeasured variables provided by the sensors. The sensors may

provide these inputs to the controller directly or indirectly through

stored media such as logs. A controller can represent the dynamic

behavior of the controlled process in a process model. A process model
is a behavioral model of the controller, and one way to represent

it is by using a state diagram. DEVS formalism [31] and hybrid

automata [12] use state diagrams to represent process models.
A state in a state diagram at time t0 is identified by the values

assigned to a set of state variables at t0 by the controller. These
state variables are distinct from the measured variables in that the

measured variables are communicated through the communication

link between the sensors and the controller, while the state variables
are maintained by the controller within the process model. The state
variables have the important property that the values of the state

variables at time t0, combined with the values ofmeasured variables
collected during the time period between t0 and time t > t0 are
sufficient to predict the values of state variables at time t , assuming

the controller processes themeasured variables instantaneously. The
controller provides the controlled variables to the actuators which
apply corresponding operations to the controlled process. The system
could include humans providing inputs to actuators as well. For

example, in an elevator system, the users of the system can be

considered to provide sensory inputs or measured variables to the

controller by pressing buttons.
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We highlight the upper half of Figure 1 as the cyber domain, and
the lower half as the physical domain, to signify the digital process-

ing of information in the upper half. The controller, in this figure, is

a digital information system that receives and produces digital val-

ues, while the controlled process is operated with analog inputs and

processes. In a large system, however, designating a system compo-

nent as either a cyber or physical component requires additional

considerations. For example, it is possible that the controlled process
has some digital components, and the operational input from the

actuators are digital values. In such cases, if the cyber elements

are fully embedded in the physical system and the cyber elements

are not explicitly modeled in the process model, we assume it is a

physical component for the purpose of our analysis.

3.2 Mapping Effects to Control Loop Effects
Leveson [18] describes a number of things that can go wrong in

the control loop from a safety perspective. While the cyber attacks

can cause the same kinds of effects as natural faults occurring with

aging or fatigued components, analyzing cyber attacks can be more

complex due to multiple reasons. Cyber attacks are intentional

activities, as opposed to natural faults. Cyber attacks may cause

multiple effects in different times from the same attack, wheres the

probability of occurrence of multiple natural faults is lower than

the probability of occurrence of a single fault. Often the effects may

be chained together to form a kill-chain. A kill-chain for a CPS

may begin with a reconnaissance phase for collecting information

flowing through the system as preparation for mounting an attack

on the controlled process [10]. The effects caused by cyber attacks

may seem unrelated as well, since the attacker has control over

what effects are applied, and where.

In Table 1, we map the different types of cyber effects [5, 11, 20,

29], and their impacts to control loop components (Figure 1). Cyber

effects in CPS can also be caused by physical attack. For example,

sensors or actuators may be damaged, tampered with, or attacked

with electromagnetic pulse (EMP) [6], resulting in altering the

measured variable values or applying wrong or delayed operations

to the controlled process. Therefore, cyber effects in CPS can result

from cyber, or physical attacks, as shown in Table 2.

One common category of effect to the control loop is the in-

consistent process model, as seen from Table 1. Let us explore this

effect further. Young and Leveson [30] note that many accidents

stem from the inconsistencies between the process model and the

state of the controlled process. Inconsistency of the process model
can represent effects stemming from sensor tampering, or effects

on the measured variables or the feedback to the sensors, as shown

in the cyber effects in Table 2, and the impact of these cyber effects

in Table 1. Changes to the actuators and the controlled variables
can also result in altered controlled process behavior. These effects
may change the process model to be inconsistent as well, since the

operations that were applied to the controlled process could be dif-

ferent from what the commands to actuators suggested. However,

not all effects could be represented by inconsistency of the process
model. In particular, the tampering of process input directly into the

controlled process may not lead to an inconsistent process model if a
sensor is able to pick-up the changes in the controlled process that
result from this input. Leveson [18] points out that a process model

Table 1: Control loop effects from cyber effects

Cyber Effects
Type

Control Loop
Element Control Loop Effects

Information

deception

including forgery,

spoofing, replay

Measured variable

Inaccurate estimated

values and inconsistent

process model, Operator
deception

Controlled variable

Altered controlled pro-

cess

Control input

Altered controller

algorithm

Information

interception

Measured variable,

Feedback

Inaccurate estimated val-

ues and inconsistent pro-
cess model, Operator de-

ception

Controlled variable,

Operation

Altered operation of the

controlled process

Information

flooding (DoS)

Measured variable,

Feedback

Inaccurate estimated val-

ues and inconsistent pro-
cess model, Operator de-

ception

Controlled variable,

Operation

Altered operation of the

controlled process

Information

timing including

delay,

desynchronization

Measured variable

Inaccurate, delayed esti-

mated values and incon-

sistent process model, Op-
erator deception

Controlled variable,

Operation

Altered operation of the

controlled process

Information

exfiltration

Measured variable,

Feedback, Controlled

variable, Operation

Privacy violation

Process input

tampering

Controlled process

Altered controlled pro-

cess

Process output

tampering

Controlled process Altered process output

Information

interception

Control input

Conflicting control inputs

and incorrect control be-

havior

can be incomplete or incorrect. If the process model is incomplete or

incorrect, it can be also inconsistent with the state of the controlled
process even without cyber effects applied. Even if the process model
is (statically) complete and correct, inconsistencies may arise dy-

namically during its operation. This may be due, for example, to

adversarial modifications of signals causing a controller to have a

false view of the state transition actually taken by the controlled

process, even if the actual transition taken is possible in the process
model. In the next section, we formalize the concept of inconsistent

process model as Process Model Inconsistency (PMI) effect, and

prove its properties.

4 PROCESS MODEL, STATES, AND
PROPERTIES

In the previous section, we identified inconsistent process model

as an important control loop effect caused by other effects. In this

section we define this effect precisely so that the limitations on

the observability of this effect can be studied. As we described in
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Table 2: Control loop effects from physical effects

Physical
Effects Type

Control Loop
Element

Immediate Cyber &
Control Loop Effects

Physical

tampering

Sensor

Information deception,

Information interception,

Information timing

Actuator

Information interception,

Altered operation of the

controlled process, Attrition
failure, Pervasion failure

Drained power

Sensor

Information deception,

Information interception,

Information timing

Actuator

Information interception,

Altered operation of the

controlled process, Attrition
failure, Pervasion failure

Section 3.1, a cyber-physical system has at least one control loop,

with messages or signals transmitted among the components partic-

ipating in the control loop. These components may be distributed

geographically, or logically separated, and hence we need to model

the dynamic aspects of a cyber-physical system as a distributed

system of communicating components, where each such compo-

nent can be a system with its own subcomponents. A process model
describes this dynamic behavior of the system, and a state space

may be used to represent the process model and its properties. A

process model may be used to represent both (a) the controller’s

belief about the state of the controlled process, (Figure 1) and (b) the

actual state of that process. In this section, we formalize process

model inconsistency (PMI) as a discrepancy between these two

models and characterize the ways in which it can arise.

4.1 Process Model and Observability
The term process model is used to describe the dynamic behavior of

an individual component of a system.We use the term global process
model for the synthesized process model of all the components. A

formalism to study such resultant behavior of synthesized process

models in System of Systems (SoS) is the Discrete EVent Simulation

(DEVS) formalism, applicable to digital and analog systems [31].

The DEVS formalism accomplishes SoS modeling by defining

two types of models: atomic and coupled. When a system cannot be

decomposed any further, its behavior is specified through an atomic

DEVS model. A coupled model allows SoS constructs to be built as

a hierarchical structure that comprises atomic and coupled models.

Let us review atomic DEVS and coupled DEVS model definitions

[31] below:

Definition 1. DEVSatomic =< X , S,Y , λ,δint ,δext ,δcon , ta >,
where

• X is the set of inputs described in terms of pairs of port and
value: {p,v},

• Y is the set of outputs, also described in terms of port and value:
{p,v},

• S is the state space that includes the current state of the atomic
model,

• δint : S → S is the internal transition function,
• δext : Q × Xb → S is the external transition function that is
executed when an external event arrives at one of the ports,
changing the current state if needed, Q = {(s, e)|s ∈ S ,0 ≤

e ≤ ta(s)} as the total state set, where e is the time elapsed
since the last external transition, and Xb is the set of bags over
elements in X ;

• δcon : S × Xb → S is the confluent function, subject to
δcon (s,�) = δint (s) that is executed if δext and δint end
up in collision; and

• λ : S → Y is the output function that is executed after internal
transition function is completed,

• ta(s) : R+
0,∞ is the time advance function.

Definition 2. DEVScoupled =< X ,Y ,D, {Md }, {Id }, {Zi,d } >, for
each component model, d ∈ D, where,

• D is a set of labels assigned uniquely to each component model
• Md is a DEVS model of d
• Id is the influencer set of d : Id ⊆ D∪{DEVScoupled },d < Id ,
and for each i ∈ Id ,
Zi,d is an i-to-d coupling such that

Zi,d : X → Xd is an external input coupling (EIC), if
i = DEVScoupled

Zi,d : Yi → Y is an external output coupling (EOC),
if d = DEVScoupled

Zi,d : Yi → Xd is an internal coupling (IC), if i ,
DEVScoupled and d , DEVScoupled

Hybrid automata theory [12] is another established formalism

used in robotics for behavior modeling. In both formalisms, the

dynamic behavior of the system is defined using states. Therefore,

we use states for representing process models.

In a distributed system, the inputs are delivered to system compo-

nents usingmessages, and output messages are generated by system

components. Therefore, in Definition 1, the inputs and outputs are

messages. We assume that a message contains values assigned to

a set of message variables. The components of a system also have

component variables whose values determine the state of that com-

ponent. The values in message variables are mapped to and from

component variables as the system runs. In CPS, the component

variable values of the controller are either used to store (1) the val-

ues of measured variables encapsulated in messages from sensors,

or (2) the commands or estimations of controlled variables (Figure
1). We discuss the concept of state in more detail below.

In Definition 1, S is the state space of an atomic component of a

cyber-physical system. As a running example, let us consider an

elevator with a simple control loop. The controller must maintain

a process model for the various components it controls. Among

those is the elevator car. We assume this process model encodes

two possible states of the elevator car: RUNNING or STOPPED. Its

internal model of the full system would also contain states for other

components such as the status of the doors on various floors. The

global state would then be an n-tuple of local states Σ = (S1, ..., Sn ),
where Si is the local state of the component i [3, 8]. For simplicity,

we focus only on models for atomic components since PMI can

already arise in this case. We denote the state space of an atomic

model as S .
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Table 3: Elevator Car Controller Multivariable

statusCarDoor motorRunning state

CLOSED * RUNNING

OPEN OFF STOPPED

The controller determines this local state from the values stored

in a sequence of component variables, wherein each constituent

component variable has a set of potential values. A component

variable may be assigned values during the system operation, which

may be normal operation or abnormal operation caused by natural

failures or cyber attacks. These values may be discrete, or analog.

For analog values such as temperature readings, we assume they

are discretized. In our case, we imagine the controller populates

two variables (statusCarDoor, and motorRunning) based on data

from sensors. The cartesian product of all of the possible values

of these component variables for each component defines all the

possible combination of values these variables can assume. We

define a multivariable to capture this concept.

Definition 3. A multivariable, V S = < v1,v2, ...,vm > may be
defined for a state space S , where v j may assume any values from
the set of values in P j . The potential ordered m-tuple values the
multivariable can assume are in the multivariable space P = (P1 ×
P2 × ... × Pm ). Elements p ∈ P are called variable assignments.

In the elevator example, the controller maintains two component

variables to store its state: <statusCarDoor, motorRunning>. The

statusCarDoor variable can assume any value from the set P1 =
{CLOSED, OPEN}, and the motorRunning variable can assume any

value from the set P2 = {ON, OFF} (Table 3). In the table, for brevity,

we use "*" to denote all possible values of that variable.

The mapping of variable assignments to the states of the elevator

car are also shown in Table 3. This mapping is the state model,

defined below. The constituent variables of a multivariable used

in such mapping in the state model are also referred to as state
variables.

Definition 4. A state model is a triple (P , F , S) where F : P → S a
surjective partial observation function. A variable assignment p ∈ P
is observable iff p is in the domain of F .

The use of a partial function F in Definition 4 is important. Vari-

able assignments not in the domain of F typically correspond to

combinations of values assigned to variables that are not thought to

be possible. For example, in themodel of the elevator car maintained

by the car controller, there is no state associated to the variable

assignment (OPEN, ON) because the car motor should never be run-

ning while the door is open. An implementation may have enough

foresight to include an ERROR state in the state space S . This is easy
enough to do with simple models. However, with more complex

models, some variable assignments may not be observable because

the programmers did not think they were possible. Exactly how the

state gets updated (or not) will depend on the details of the imple-

mentation. For the purposes of our formalization, it is sufficient to

allow the observation function to be partial and consider variable

assignments outside the domain of F to be unobservable.

Definition 5. A process model (P , F , S,T ) combines a state model
with a transition relation T ⊆ S × S .

4.2 Incorrectness and Incompleteness
The process model maintained by a controller represents only those

states and transitions the controller knows to expect. We therefore

refer to the process model maintained by a controller as a known
process model (Pk , Fk , Sk ,Tk ). Unfortunately, reality is almost al-

ways richer than this model. For example, the “true state space”

of an elevator car would be more than just the set {RUNNING,

STOPPED}. It would capture whether the car was moving UP or

DOWN, what floor it is at, if it is between floors, etc.

Considering all possible measurable variables of a systemwemay

imagine a potential state space SP resulting from a state assignment

function FP that serves as an upper bound on what states the

controlled component can actually be in. In general this potential

state space may not even be finite. For example, using the natural

numbers to represent the possible values for the floor representing

the elevator car’s position while stopped gives an infinite set of

possibilities. In practice, reality is bounded in various ways. For

example, in a 5-story building the elevator car can never be on

floor 6. When defining the “true” state of a controlled component,

we may imagine that there is some finite set of variables that can

be measured, and that access to those values would provide an

accurate picture of reality, that we call the ground truth process
model.

Definition 6. The ground truth process model for a component is a
process model (Pr , Fr , Sr ,Tr ) such that every state of Sr is reachable
viaTr from some initial state s0. That is, for every state sn ∈ Sr , there
is some sequence s0, s1, . . . , sn−1, sn such that (si , si+1) ∈ Tr for every
0 ≤ i ≤ n.

The ground truth process model is not typically known a pri-

ori. For a non-trivial system it may be hard to create an exhautive

ground truth process model consisting of all reachable states. We

would like to stress that the ground truth process model is not ex-
pected to be built a priori, or at any time, by the system designers

or operators. Rather, the ground truth process model is the hypo-

thetical and accurate behavior model of the system under normal

and some abnormal operations. The purpose of defining the ground

truth process model is to contrast it with the known process model.

There can also be multiple ground truth process models for the

same system under different abnormal operations (e.g. under dif-

ferent adversarial assumptions). When new abnormal operations

happen, naturally the ground truth process model will also expand

to include the new reality. Therefore, one may think of the ground
truth process model as the process model of the system under the

normal and abnormal operations we are considering for analysis.

A known process model and a ground truth process model can

differ in two primary ways. The known process model can either

be incorrect, incomplete, or both, as defined below.



HoTSoS ’19, April 2–3, 2019, Nashville, TN, USA S. K. Damodaran and P. D. Rowe

S1

S2

S3

Sr

Figure 2: Forced State and Transition

Definition 7. Let (Pk , Fk , Sk ,Tk ) and (Pr , Fr , Sr ,Tr ) be known and
ground truth process models respectively. The known process model is
incorrect iff Sk \ Sr , ∅ or Tk \Tr , ∅. The known process model is
incomplete iff Sr \ Sk , ∅ or Tr \Tk , ∅. When the known process
model is incomplete, a forced state is any state s ∈ Sr \ Sk and a
forced transition is any transition t = (s1, s2) ∈ Tr \Tk .

Intuitively, incorrectness refers to errors, and incompleteness

refers to missing transitions and states in the known process model.

In practice, it is possible for the known process model maintained by

the controller to be incorrect in the sense of Definition 7. However,

in the context of security incorrectness is not always a cause for

concern. If one can make security guarantees based on assuming

the system can reach more states than it really can, this typically

means that those security guarantees would still hold in the more

restricted system without those states.

Incompleteness is somewhat different from incorrectness. It is a

simple application of the definitions to note that for an incomplete

known process model, there must be either a forced state or a forced

transition. These are depicted in Fig. 2, where known states and

transitions are represented with solid lines, and forced states and

transitions are represented with dotted lines. Thus, sr is forced state,
and (s1, sr ) is forced transition into the forced state from known

state s1. Similarly, (s3, s2) is a forced transition between known

states.

Forced states and transitions naturally pose potential dangers

that incorrectness doesn’t. Namely, safety properties satisfied by

the known process model may not be satisfied by the ground truth

process model. In a distributed system, safety properties [1] of the

system must evaluate to true in the states of the system during

operations. Safety properties are inherent properties of any given

state, and are not dependent on the details of attacks or failures

that caused the system to enter that state. We apply this concept

of safety properties to the states of the controlled process. Hybrid

automata use the concept of a bad state to describe states where at

least one safety property is violated [27]. We define bad state and
normal state formally below.

Definition 8. A normal state, sn ∈ Sn ⊆ SP , is a state where all
safety properties will evaluate to true. Sn is the normal state space. A
bad state, sb ∈ Sb ⊆ SP , is a state where at least one safety property
will evaluate to false. Sb is the bad state space.

SP

Sr

Sk
Sb

Figure 3: State Space

Figure 4: Car Controller State Space

The definition of the bad states makes no reference to the known

or ground truth process models. The general case (assuming a cor-

rect known process model) is depicted in Fig. 3. Notice, in particular,

that there may be many states in the ground truth process model

that are unknown, yet are not bad states. That is, forced states are

not necessarily bad states. This means that the mere fact of enter-

ing unknown states need not violate safety properties of interest.

However, if (Sr \ Sk ) ∩ Sb , �, the attacker can succeed.

For the elevator example, consider the situation depicted in Fig. 4.

We could define a safety property: "Elevator Car will not move with

the car door open." Given this safety property, the states with solid

outlines (described in Table 3) are normal states. A Car Controller

state X corresponding to <OPEN,ON> is a bad state, since we don’t

want the car running with its door open. In this example, the bad

state X in Fig. 4 is a forced state because there is some way to

transition into it from the STOPPED state. An adversary able to

force a transition into this state would violate the safety property.

Alternate safety property definitions may result in differing normal
and bad state designations.

The constituent variables of the multivariable may be analyzed

directly for the evaluation of safety properties. That is, rather than

evaluate a safety property against a state, it may be evaluated

against a variable assignment. Regardless of whether a variable

assignment is in the domain of Fr or Fk , safety properties may

be evaluated against them. It should be noted, however, that for

consistency in this case, when two variable assignments get mapped

to the same state, they should either both satisfy the safety property

or both fail the safety property.

Lemma 1. Let (Pk , Fk , Sk ,Tk ) and (Pr , Fr , Sr ,Tr ) be a known pro-
cess model and a ground truth process model, respectively. If there is
a forced state, then there is a forced transition.
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Proof. Let sn ∈ Sr be the forced state assumed to exist. By

Definition 6, there is some sequence s0, s1, . . . , sn−1, sn such that

(si , si+1) ∈ Tr for every 0 ≤ i ≤ n. In particular t = (sn−1, sn ) ∈ Tr
but t < Tk because Tk ⊆ Sk × Sk and t < Sk × Sk . □

In the elevator example, the state X in the ground truth process

model for Car Controller (Figure 4), cannot be disconnected from the

other states, since this state is reachable in the ground truth process

model due to a cyber attack or a system failure. This transition is

shown by the dotted arrow from STOPPED state to X state.

4.3 Process Model Inconsistency
In the previous section, our treatment of incorrectness and incom-

pleteness of the known process model with respect to a ground

truth process model naturally invoked the notion of safety property.

Young and Leveson [30] note that problems arise due to an incon-
sistency between the known process model and the ground truth.

This holds irrespective of whether or not particular safety proper-

ties are violated. That is, process model inconsistency (PMI) is a

potentially deleterious effect in itself. In this section we therefore

formally define PMI and prove that it necessarily poses a danger

for all incomplete known process models.

Intuitively, PMI occurswhen the observationsmade in the known

process model differ from those of the ground truth process model.

In order to talk meaningfully about observations of the ground

truth from within the known process model, we need a way of

connecting the two process models to define the known process

model’s observations of the ground truth. Since observations in

the known process model correspond to interpretations of variable

assignments p ∈ Pk , it is sufficient to connect the ground truth

variable space Pr with the known variable space Pk .
In general, these two spaces may not be related. For example,

the variables tracked in the known process model might not be

direct measurements. However, it is with no loss of generality that

we may assume the ground truth variable space to be a superset

of the known variable space. We can always expand Pr to contain

known variables not otherwise present, and simply allow Fr to

be insensitive to the values of these extra variables. This will not

interfere with the established aspects of the ground truth model.

We formally define this structured connection between known

process models and ground truth models below.

Definition 9. Let (Pk , Fk , Sk ,Tk ) and (Pr , Fr , Sr ,Tr ) be known and
ground truth process models respectively. Themodels are connected by
inclusion and projection (or just connected) iff Pk = P1k×P

2

k · · ·×P
m
k ,

and Pr = P1r ×P
2

r ×· · ·×P
n
r , where n > m and P ik ⊆ P ir for 1 ≤ i ≤ m.

ι : Pk ↪→ Pr is the natural inclusion of Pk into Pr , where fixed values
for the variable vm+1, . . . ,vn are chosen. π : Pr ↠ Pk is the inverse
(partial) function.

Since the order of presentation of the P i is arbitrary, we choose
a consistent order for P ik and P ir to ensure π and ι work component-

wise in the natural way. When two models are connected, their

connection can be depicted as in Fig. 5. The function ι and π allow

us to “move” from one model to the other. This ultimately allows a

clean definition of inconsistency. In particular, we can start with

Pk Sk

Pr Sr

ι

Fk

π

Fr

Figure 5: Connected Process Models

a well-defined notion of observations of ground truth within the

known process model.

Definition 10. A variable assignment p ∈ Pr is observable in the
known process model iff p ∈ dom(π ) and π (p) ∈ dom(Fk ). p ∈ Pr
is correctly observed in the known process model iff p is observable
and Fk (π (p)) = Fr (p). A pair of variable assignments (pa ,pb ) is
observable iff its component variable assignments are observable.
Similarly the pair (pa ,pb ) is correctly observed iff its component
variable assignments are correctly observed.

This definition uses π : Pr ↠ Pk to mediate observations. In-

consistencies may arise because we cannot ensure that Fr and Fk
provide consistent interpretations of the common portions of vari-

able assignments. That is, observations in the known process model

based on access to variables in Pk interpreted according to Fk might

differ from observations in the ground truth process model based on

the larger set of information in Pr with accurate interpretation Fr .
There are two main things that give rise to disagreements. The

current state may simply be unobservable from within the known

process model, or it may make an incorrect observation.

Since P ik ⊆ P ir for 1 ≤ i ≤ m, it is possible for this function

to be undefined for some values. Consider for example a variable

assignment p = (p1,p2, . . . ,pn ) ∈ Pr where p1 ∈ Pr \ Pk . The
resulting variable assignment (p1,p2, . . . ,pm ) is not in Pk , so p is

not in the domain of π . This results in the variable assignment

not representing an observable state in the known process model.

Even if π is defined on a given p ∈ Pr , it is possible that π (p)
is outside the domain of the partial function Fk . Here too, the

variable assignment does not represent an observable state. When

the variable assignment is observable, the known process model

assigns it a definite state. An incorrect observation is one in which

this state disagrees with the state observed by the ground truth

model.

Definition 11. Let (Pk , Fk , Sk ,Tk ) and (Pr , Fr , Sr ,Tr ) be known
and ground truth process models respectively that are connected. A
transition t = (sa , sb ) ∈ Tr is an instance of Process Model Inconsis-

tency (PMI) iff there are some variable assignments (pa ,pb ) resulting
in t and (pa ,pb ) is unobservable or incorrectly observed in the known
process model.

Sometimes, cyber effects may need multiple forced states, forced
transitions, or both to describe them, as we show in the example in

Section 5. The theorem below explores the limitations on observ-

ability of forced transitions in ground truth model given that we

are only equipped with the known process model.
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Theorem1. Let (Pk , Fk , Sk ,Tk ) be an incomplete model with respect
to the ground truth model (Pr , Fr , Sr ,Tr ). Assume they are connected
by inclusion and projection. Then either the ground truth model con-
tains at least one instance of PMI, or there is a forced transition that
is correctly observed.

Proof. By Def. 7, the ground truth process model contains ei-

ther a forced state or a forced transition. But Lemma 1 tells us that

the existence of a forced state implies a forced transition. So we

know there is some (sa , sb ) ∈ Tr \Tk . We take cases on whether or

not sa ∈ Sk and sb ∈ Sk . We examine observability according to

Def. 10 using the map π : Pr ↠ Pk which must exist according to

Def. 9.

Case 1. At least one of sa or sb is in Sr \ Sk . Without loss of

generality, let it be sa . We will now establish what the known

process model might observe. Consider any element p ∈ Pr giving
rise to sa (i.e Fr (p) = sa ). Such a p exists because Fr is surjective

by Def. 4.

Case 1a. If p is not observable, then (sa , sb ) is an instance of PMI

by Def. 11.

Case 1b. If p is observable, then Fk (π (p)) = s ′a ∈ Sk is well-

defined. But since sa < Sk , sa , s ′a , the transition is incorrectly

observed (Def. 10). Thus (sa , sb ) is an instance of PMI by Def. 11.

Case 2. Both sa and sb are in Sk . Consider any (pa ,pb ) such that

Fr (pa ) = sa and Fr (pb ) = sb .
Case 2a. At least one of pa or pb is unobservable. In this case,

(sa , sb ) is an instance of PMI by Def. 11.

Case 2b. Both pa and pb are observable. Thus we can define

s ′a = Fk (π (pa )) and s
′
b = Fk (π (pb )).

Case 2b(i). Either s ′a , sa or s ′b , sb . In this case, (sa , sb ) is
incorrectly observed and, hence, it is an instance of PMI by Def. 11.

Case 2b(ii). s ′a = sa and s ′b = sb . In this case, the transition is

correctly observed as (sa , sb ), but this transition was assumed to be

a forced transition, so the last clause of the conclusion is satisfied.

□

When a forced transition is observable, depending on the imple-

mentation of the known process model, this state transition may be

flagged as an error, or ignored. Therefore, the transition from the

STOPPED state to X state in Car Controller is a forced transition

(Figure 4). Given Theorem 1, describing instances of PMI using

a state diagram of the known state space poses some interesting

challenges, since the state diagram of the known state space can
only be used to show forced transitions among the known states.

Interestingly, the converse of Theorem 1 is false. That is, incom-

pleteness is not necessary for PMI. Indeed PMI can occur even when

the known process model is both correct and complete. This could

be due to a tampered sensor sending a false signal to the controller.

Expanding on the elevator example, the controller may receive a

signal that the elevator car went 1 floor up, when, in fact, it went

1 floor down. Both are possible, so there is no inherent problem

with the process model itself. Rather, PMI arises in this instance due

to differences in the observation functions Fk and Fr . This means

that improving the known process model may be insufficient to

fully address instances of PMI! It must be addressed by fixing the

system as a whole.

5 ILLUSTRATIVE EXAMPLE
We will presently illustrate the theoretical results from the previous

section using the example of an Automated Teller Machine (ATM)

state machine. We use the ATM state machine described by Iqbal

et al. [14] for our illustration, since this model is formally verified.

Figure 6 reproduces the state machine from [14] with minor modi-

fications for readability. Since this state machine is designed by the

model developers of the ATM, therefore, this state machine is the

known process model by Definition 5.

In this ATMmodel, the states of the ATM are specified in the rec-

tangle boxes, and the state transitions are described by annotated

arrows. The customer is not explicitly modeled, though the state

diagram implies an external customer. The annotations describe

either the conditions for a state transition, or the inputs to a state

that could cause a state transition. These states define the state

space, Sk . Some of the arrows may be interpreted as internal transi-

tion functions, δint . For example, ("Wrong PIN","Print Receipt") as

in Figure 6. Some other transitions may be interpreted as external

transfer functions δext . For example, when the "Insert Readable

Card" external event occurs, the system transitions to "Request

Password" state. There are λ output functions that map the states

to external outputs. For example, from "Verify Account" to an exter-

nal system to "Verify Externally." In this example, we do not show

the state variables, and assume a state assignment function exists

for the known process model. With respect to a safety property of

"ATM will dispense cash to authenticated users," all the states in

the diagram are normal states (Definition 8). On the other hand, if

the safety property is "Only authenticated users are allowed access

to the ATM", the state "Wrong PIN" may be considered a bad state.

In the known process model, this transition will be observed as a

known transition from "Process Transaction" to "Dispense Cash."

A fairly comprehensive summary of ATM attacks and detection

mechanisms are described by Priesterjahn et al. in [25]. The promi-

nent ATM attacks fall in to the following categories: card skimming,

where the information in the inserted bank card is skimmed for

later use; card trapping, where the bank card is trapped after the

transaction is complete using an extraneous device by the attacker

in order to steal it later; PIN capturing, where the user’s PIN number

is stolen while being used; cash trapping, where the cash dispensed

is trapped by the attacker using an extraneous device in order to re-

trieve it later; brute force safe opening to steal the cash in ATM; and

using malware to attack the ATM firmware [25]. There are several

variations of a recent malware attack known as "jackpotting" [28],

and all these variations seek to change the firmware processing of

the ATM. Figure 7 describes the reached states and the ground truth
model of the ATM system while under two physical attacks: card

trapping, and cash trapping, and under jackpotting cyber attack.

When a card trapping attack occurs, the ATM is prevented from

going to the "Eject Card" state by the attacker. Instead, the attacker’s

device prevents the card from ejecting (shows as the "Trap Card"

transition), and once the customer leaves, attacker retrieves the

card. The ATM system is unable to observe this card trapping, and
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Figure 6: ATM State Machine: Known Process Model

Figure 7: ATM State Machine: Ground Truth Model

this forced transition is observed incorrectly as a known transi-

tion by the ATM system. While under the cash trapping attack,

once the "Dispense Cash" state is exited, the system goes to "Trap

Cash" state, where the attacker has inserted a device to prevent

dispensing of cash. The attacker then removes the device, and steals

the cash. Since the known process model does not have this forced

transition, for the ATM system, the forced transition is observed as

the "Take Cash" transition, a known transition. Again, the attack

goes undetected. In all these cases, there were no sensors or state

variables to detect the effects of these attacks, and the effects were

undetectable using the known process model. In the jackpotting

attack, after the "Insert Readable Card" state, the system transitions

to "Activate Malware" state, and skips the authentication states, and

directly transitions to the "Dispense Cash" state, a transition from

an unknown reached state to a known state.

5.1 Practical Implications
We believe the theoretical work described in Section 4 will have

implications in several areas. In this section, we discuss the practical

implications to attack detection, cyber Testing & Evaluation (T&E),

and system design.

5.1.1 Attack Detection. In Section 3 we established that inconsis-
tent process model is a control loop effect of several kinds of cyber

and physical effects on a cyber-physical system. In Section 3, we

formalized the concept of inconsistent process model as Process Model
Inconsistency (PMI). In legacy systems, the existing sensors and in-

strumentation are primarily used to support the normal operations,

and hence the known process model of the system. Further, the

known process model is implemented using the controller firmware.

Even if we assume the firmware has no bugs and accurately im-

plements the known process model, a very unlikely situation in

most systems, by Theorem 1, we could predict it is likely that some

of the cyber attacks cannot be detected by just instrumenting the

firmware, since this will not help make the known process model

complete.

While it is not possible to develop a comprehensive ground truth
process model a priori and identify all the missing state variables

that need to be monitored for effects, it is important to maintain and

augment the known process model for critical system components

when the system is operating, well after the design is complete.

The possibility of incorrect observation of a forced transition as a

known transition is a concrete possibility, implying if cyber attacks

are only reported by observing the effects in the firmware of the

controller, the attack reports will be inaccurate or underreported.

To detect attacks as they happen, dynamic behavior of a system

needs to be analyzed, including the communications to and from the

controller. Using threat intelligence information and circumstantial

evidence may also need be used to augment detection capabilities,

since in many real systems proving an attack has happened with

evidence may not be feasible because systems are not instrumented

to collect relevant evidence.

Theorem 1 opens the possibility of correctly observing a forced

state transition, say (sa , sb ). This is a kind of anomaly detection, and

so some attacks may be correctly detected in this way. However,

the potential to miss forced transitions points to limitations in

the effectiveness of anomaly detection, because it is quite possible

that anomalies may not be observable or correctly observed in the

known process model, leading to higher false negatives.
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5.1.2 Cyber T&E of CPS. Cyber T&E concerns with the testing of

CPS under various attack scenarios, and cyber modeling & simula-

tion (cyber M&S) is a commonly used approach to conduct cyber

T&E [9]. Observing the effects of attacks is a key aspect of cyber

T&E. The previous section points to the need to expand instrumen-

tation and sensors to variables beyond what is needed for system

operations. This need applies to models used in cyber M&S also.

Otherwise, the testers themselves may experience PMI without

being aware of it.

5.1.3 System Design. An improved system design approach would

need to focus on detection of forced transitions, irrespective of

whether these transitions lead to normal or bad states. For example,

in the ATM example, if somebody attempts entering PIN more than

10 times, it is not detectable, though the entire state machine for

entering a wrong PIN is in the known process model. The known

process model may need to be expanded to include "Count Wrong

PIN Attempts" and associated transitions. Another improvement

that could help is the elimination of the default assignment of states.

For example, in the ATM example, once cash is dispensed, there is

no timer to detect whether the cash has left the dispense tray in a

timely manner. The ATM system, after "Dispense Cash" state, could

prevent the default transition to "Another Transaction," if there was

a timer that detects cash has been in the dispense tray longer than

a preset time. The cash trapping attack might be detected this way.

6 CONCLUSIONS
We introduced Process Model Inconsistency (PMI) as an important

control loop effect of several types of physical and cyber attacks

on Cyber-Physical Systems in Section 3. We showed that it is quite

possible to either not observe a PMI effect at all during or after

an attack, or come to incorrect conclusions based on the observa-

tions of the effects of an attack on the controller or firmware. We

illustrated the theoretical results with an example of an Automated

Teller Machine (ATM) undergoing two physical and a malware

attack. We also described some practical implications of the limita-

tions on observability in the areas of attack detection, cyber T&E,

and system design. Evaluating these implications rigorously from a

security perspective, and improving the security of new and legacy

CPS based on these implications remain to be done. This paper does

not address the impact of cyber attacks on liveliness properties, and

we hope to address this in future work.
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