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ABSTRACT
Remote attestation consists of generating evidence of a system’s
integrity via measurements, and reporting the evidence to a remote
party for appraisal in a form that can be trusted. The parties that
exchange information must agree on formats and protocols. We
assert there is a large variety of patterns of interactions among
appraisers and attesters of interest. Therefore, it is important to
standardize on flexible mechanisms for remote attestation.Wemake
our case by describing scenarios that require the exchange of evi-
dence among multiple parties using a variety of message passing
patterns. We show cases in which changes in the order of evidence
collection result in important differences to what can be inferred
by an appraiser. We argue that adding the ability to negotiate the
appropriate kind of attestation allows for remote attestations that
better adapt to a dynamically changing environment. Finally, we
suggest a language-based solution to taming the complexity of
specifying and negotiating attestation procedures.

1 INTRODUCTION
In distributed systems, a component must frequently make trust
decisions about other components it relies upon. These decisions
are often made implicitly, and by default with little system infor-
mation. For example, in an internal corporate network, a printer
may implicitly trust any device that has been granted access to the
network. Remote attestation [Coker et al. 2011, 2008; Haldar et al.
2004] procedures allow a relying party to make its decision on the
basis of evidence provided by its peer systems. In this sense, remote
attestation is an enabling capability that allows for more nuanced
and context-dependent trust decisions.

Trust in the context of remote attestation is defined as: (i) having
a strongly bound identity; (ii) being built of known, good parts;
and (iii) being directly or indirectly observed via a trusted third
party operating as expected. Making a trust decision involves a
relying party requesting an attestation from a target (or attester) that
performs an attestation of its state. The target returns collected trust
evidence reflecting its configuration and behavior. That evidence
is then evaluated by an appraiser allowing the relying party to
make a trust decision based on results.1 While mechanisms are
important, we explore defining abstract protocols for orchestrating
attestations.

1Originally the roles of appraiser and relying party were conflated in a single principal
that both appraises and makes a trust decision. Separating roles originates with the
IETF RATS attestation standards study group.

Our work rests on two premises. First, remote attestation is po-
tentially applicable whenever a trust decision about a peer system
must be made. The sheer diversity of settings and contexts where
trust decisions are relevant precludes the possibility of a small
set of solutions to satisfy the needs of every situation. A collec-
tion of diverse mechanisms for gathering and appraising evidence
is essential. Similarly, flexible mechanisms must be provided for
coordinating both attestation and appraisal activities.

Second, evidence of trustworthiness may contain sensitive infor-
mation that could expose the attesting system to attack, perhaps by
revealing latent vulnerabilities. The attesting party must have a say
in what is reported, how it is reported, and to whom it is reported
during an attestation. The attesting party must be protected by
local policy that describes how it will respond while protecting
sensitive information.

2 TRUST AND EVIDENCE
What does it mean for a router to be trustworthy? A printer? A
laptop? A mobile phone? An autonomous vehicle? There is no
uniform answer to these questions. However, one thing should be
clear: the answer will not be the same for each system. A printer and
router perform different functions of differing criticality. Assessing
the trustworthiness of a device must account for the function it
should perform.

Equally important is the decision a trust assessment is supporting.
For example, a user must decide whether to use a given printer
to print a specific document. Depending on the contents of the
document, it may be more or less important to believe the printer
does not have hidden code to copy and send the contents elsewhere.
The burden of trust is much lower when printing public information
than for printing proprietary information. Similarly, for printing
a given document, the burden of trust may differ depending on
whether the printer is a public, shared resource, or whether it is
a private resource sitting behind a firewall. Considerations only
multiply as focus shifts from one device to another, from one trust
decision to another, and from one context to another.

For any trust decision, a determination of what information a
relying party will need to proceed must be made. Such information
minimally depends on the kind of device it is and what decision the
trust assessment is supporting. Some situations may require only
simple evidence to support a trust decision, as an example a printer
having a cryptographic key certified by the organization so it can be
trusted for low-risk interactions. Other situations will require more
extensive evidence. For example, hashes of key portions of code
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must match known provisioned values that have been previously
statically analyzed for software assurance. Still others will find that
evidence generated from boot-time measurements of a component
set is less useful than evidence that speaks to their runtime states.

In addition to base evidence attesting to a system, a relying party
or appraiser may wish to receive meta-evidence attesting to the
validity of the base evidence. Such meta-evidence may be as simple
as a hardware signature over the base evidence, or something more
complex such as an attestation of the evidence-generating code
itself. Layered evidence might be provided that reflects a system’s
layered architecture.

In the end, a relying party must make its trust decision using the
body of evidence provided by the attesting device and assessed by
an appraiser. Such evidence ranges from a simple hash to complex,
layered evidence with cryptographic meta-evidence. Ideally, evi-
dence will be sufficient for a relying party to determine whether the
device is in a known, expected state and acceptable for use. How-
ever, attestation can only observe a system and provide evidence.
It cannot alter underlying mechanisms that make a component
trustworthy or untrustworthy.

3 ATTESTATION USE CASES
There are a wide variety of use cases where the addition of attes-
tation mechanisms might reasonably provide benefit. Any time a
trust decision is required to support a use case, evidence provided
through attestation can be expected to increase its quality. A gen-
eralized list of some possible use cases demonstrating the potential
of attestation mechanisms follows.

• Authentication—Authentication is a means to support trust
decisions with identity information. Attestation can offer
evidence that the authentication mechanisms and the under-
lying system are indeed those expected without tampering,
increasing confidence that correct identities are used in the
trust decisions.

• Release of sensitive information—Decisions to release sensi-
tive information to remote entities introduce risk. A poor
decision regarding such things as cryptographic keys, private
credentials, financial information, among others can cause
significant damage. Attestation enables the decision process
to incorporate information about the receiving system.

• Network Access Control—Any authorization decision about
access to a remote resource will benefit by augmenting the
presented credentials with integrity information about the
system from which the request is made. This use case is
applicable to all manner of remote resources from simple
web requests to assessing the worthiness of a system to join
a closed network.

• Assessing Network Resources—Just as a service provider can
benefit from attestation about a requesting system, any re-
quest for service can be enhancedwith a trust decision asking
about the worthiness of the provider to service the request.
This enables such things as detecting compromised servers
or other networked devices.

• Remote Host Monitoring—Although not a traditional use case
where attestation evidence directly supports a trust decision,
remote host monitoring does exhibit key aspects to warrant

its inclusion as a use case. Monitoring systems gather in-
formation and present it to remote servers where decisions
are based on analysis of the data. Robust attestation mecha-
nisms can be used to collect integrity evidence at a host and
provide the analysis processes of the monitoring system key
information in support of better assessments and responses.

• System Assessments—Every time a system is used there is
an implicit trust decision that it is worthy for the purpose
it is being used for. System audits and virus scanning are
techniques used to gain this trust. Attestation mechanisms
can be used to further establish trust in a system by providing
evidence that it has not been compromised and is as expected.
This is particularly true where attestation evidence contains
runtime integrity data.

4 WORKFLOW VARIATIONS
When attestation mechanisms are integrated into a system in sup-
port of a use case, there are many factors that need to be considered.
Among them are where attestation requests originate, where and
how evidence is to be collected, how evidence is to be packaged
and presented to appraisal processes, and how results from attes-
tations will figure into the results of trust decisions. Collectively,
these choices dictate an attestation workflow that describes how
attestations will work. When visualizing workflows, it is useful to
consider that each implies a distinct "shape" of the attestation. As
there are a wide variety of possible choices, there can be a wide
variety of workflows each taking on a distinctive shape.

In practice, many attestations fit two general workflows. The first
is a certificate-style workflow where upon receiving an attestation
request, an attester sends evidence to an appraiser that produces
an unforgeable appraisal certificate. The certificate is sent to a
relying party where an attestation policy governs how the trust
decision is impacted (Figure 3). The second is a background check
workflow where in response to an attestation request, an attester
sends collected measurements to a relying party who interacts with
an appraisal process directly for necessary, appraisal results. These
results are used to consult the attestation policy that will impact
the trust decision (Figure 2).2

Despite the utility of these two models, it would be a mistake to
assume they are the only models that should be supported. Many
other useful workflows are possible. For example, the use case might
require that two parties attest to each other changing the shape
of the workflow in either model. Further still, how that mutual
attestation might proceed can result in variations of the workflow
shape as one side or the other might be required to attest first or
perhaps they engage in concurrent attestations.

Workflow shape can be impacted by variations in evidence type,
how it is gathered and any previous relationships between the
parties in the interaction. Variations of a simple Authentication
example illustrate how simple changes result in multiple shapes.
Throughout the example, the term user is used for interactions that

2The certificate-style and background check style trace their origin to discussions with
the IETF RATS attestation standards subcommittee. They use the term passport in lieu
of certificate.
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take place on the user’s behalf. In an implementation, these opera-
tions would all likely be handled automatically by the attestation
service running on the user’s local machine.

The simplest implementation of the Authentication use case is
shown in Figure 1. The system first prompts the user for authentica-
tion credentials. Then the user then requests and appraises evidence
that demonstrates the system’s integrity.

•

•

•

•

• •

•

•

•

•

Relying Party/Appraiser Target

Request Access

Request Credentials

Request Evidence

Evidence

Credentials
Appraise

Figure 1: Attestation process showing interaction among re-
lying party and target.

Depending on the relationship between user and system, the
user might desire a complex measurement that is more detailed
than in the previous example. In this case, the user may be incapable
of appraising the result and may wish to send the evidence to a
trusted third party for appraisal. This interaction could take the
form of the sequence diagram in Figure 2.
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Relying Party TargetAppraiser

Request Access
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Request Evidence

Evidence

Credentials

Evidence

Pass
Appraise

Figure 2: Attestation process using a third party appraiser.

If the system is accustomed to handling this type of request, it
could opt to keep a fresh copy of its appraisal result signed by a

trusted third party, ready to offer the result to any users that request
it (Figure 3). This final use case assumes the user and the system
both trust the third party performing appraisal. The cached result
must remain fresh enough for the user’s needs as determined by
user local policy.
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Result

Request Access

Request
Credentials

Request
Certificate

Certificate

Credentials

Appraise

Check Result

Figure 3: Attestation process using a cached appraisal result.

As the Authentication example shows, variations in the use
case scenario impact the workflow shape. It is also possible to see
variations of the requested evidence itself impact workflow shape.
Consider a use case where evidence about an attesting system must
be augmented with evidence about a hypervisor the attesting entity
is running on. This is perfectly reasonable to ensure a relying party
will have as much relevant evidence as possible in making a trust
decision. As the collection of hypervisor and guest system evidence
are likely separate collection processes, a simple change in evidence
for an otherwise identical use case results in a different shape as
well as a potentially different result for a trust decision. (Figure 9).

Interestingly, all three examples of Authentication produce the
same result type and engage in the same basic interaction. An
access triggers a credential request that in turn triggers appraisal
and a decision concerning release of credentials. Differences are
embodied in how evidence is gathered and appraised. It is the same
Authentication surrounded by different mechanisms supporting
appraisal.

Understanding how attestation workflows imply shape enables
trust analysis of variations that informs decisions about what shapes
are suitable for given use cases. It is also a useful construct to help
ensure that all parties involved in an attestation are cooperating to
produce a proper result. Failures in these analyses might very well
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compromise the quality of the trust decisions rather than enhance
them.

5 ORDER MATTERS
The previous section showed how slight variations in the work-
flow, including collected evidence types, can impact the attestation
process and resulting trust decisions. The order measurements are
taken and how they are composed to form evidence can be as im-
portant as the measurements themselves with regard to inferences
about trust by a relying party. As ordering relations and composi-
tion can be reflected in workflow shape, this too can be important
to inferences about trust.

Consider a simple example in which an integrity measurement
of a target userspace process (TP) is taken at runtime by a local
userspace measurer (UM) [Pendergrass et al. 2019]. For example,
UM might be host-based antivirus software that periodically scans
for malicious changes, or a tool that probes the host’s browser for
suspicious extensions. The most important attribute of UM is its
location in userspace alongside TP, its target. In particular, there
is no difference in the ambient protection level supplied by the
underlying system to UM and TP.

The result of UM’s measurement may be used to form evidence
for an appraiser’s consumption. Depending on its requirements, the
appraisermight request, alongside the evidence about TP, additional
evidence attesting to the integrity of UM’s own runtime state. For
example, this evidence might be based on a measurement taken by
a userspace integrity monitor (UIM) embedded in the host’s running
kernel. By virtue of its location in the kernel, UIM is afforded a
greater degree of protection frommalicious runtime tampering than
either of UM or TP. Figure 4 depicts UIM, UM and TP as components
within the attesting host, along with their userspace or kernel space
locations and measurement relationships. The appraiser is assumed
to be external to the host in this example.

Userspace
Measurer

Target Process

Userspace
Integrity
Monitor

User

Kernel

Figure 4: Compound attestation structure showing internal
processes involved in measurement.

In order to construct the compound evidence over UIM and
UM’s measurements, it is necessary to decide in what order these
measurements should be taken. There are three possibilities:

(1) UM measures TP before UIM measures UM
(2) UIM measures UM before UM measures TP
(3) The measurements are taken simultaneously

Suppose the measurements are taken in the presence of a power-
ful, active adversary who will attempt to corrupt and repair compo-
nents of the attesting host at runtime. In this context, corrupt refers
to any modification of a component’s runtime state that subverts
its intended function, and repair refers to the return of a corrupt
component to its regular state, in which the component carries out
its intended functions faithfully. Assume that all components of
the attesting host are initialized in regular states at system boot.
Relative to intended measurement functions, the regular versus
corrupt notion has two important implications:

• A regular measurer always accurately reports its measure-
ment of the target’s runtime state

• A corruptmeasurer always reports ameasurement indicating
that its target is regular, even if it is corrupt

Suppose at some time before the attestation begins, the adversary
has corrupted TP. In particular, TP is corrupt when UM measures
it. If the compound evidence received by the appraiser indicates
both UM and TP are regular, the adversary has successfully avoided
detection. Two key questions are of interest in this scenario:

• What other components must the adversary have also cor-
rupted, either before or during the attestation, in order to
avoid detection?

• Can the order in which the measurements are taken be used
to make avoiding detection more difficult?

There are several points to keep in view when addressing these
questions. As noted, UIM runs wholly within the attesting host’s
kernel and is therefore more difficult to corrupt than UM or TP.
Moreover, the act of repairing a component should be regarded as
relatively easy to achieve even in narrow time windows, such as
during an attestation. In particular, repairing a component is easier
than corrupting one in a narrow time window.

Because UM reported that TP was regular when it was in fact
corrupt, UM must also have been corrupt when it performed its
measurement. This corruption of UM may have occurred before
or during the attestation, depending on the order of the two mea-
surements. Because UIM reported that UM was regular, one can
further infer that the adversary either additionally corrupted UIM
or repaired UM after it measured TP but before it was measured by
UIM [Rowe 2016b].

If UM measures TP before UIM measures UM, the adversary can
avoid detection by corrupting UM at any time before the attestation
begins and repairing it after it has measured TP but before it is
measured by UIM. Under this ordering, the adversary has as much
time as they need to corrupt a relatively less-protected component.
During the attestation, the adversary is only required to repair UM,
an easier objective to achieve in a narrow time window than a
corruption. This ordering thus puts the adversary at an advantage.

By contrast, the adversary is much more constrained when UIM
measures UM before it measures TP in turn. In order to avoid de-
tection, the adversary must either 1.) corrupt both UIM and UM
before the attestation begins or 2.) corrupt UM during the attesta-
tion, after it has been measured by UIM but before it measures the
corrupt TP. Here, the adversary is required to choose between a
relatively difficult corruption of UM and UIM, which enjoys kernel-
level protections, before the attestation begins, or a corruption of
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the less-protected UM in the narrow time window between mea-
surements. Either way, the adversary is at a disadvantage compared
to the previous ordering.

It is reasonable to suppose this adversary we have considered
is able to exploit slight natural delays between the measurements,
or even induce them, to their advantage. The case of simultaneous
measurements is therefore also likely to benefit the adversary, who
could arrange delays to force the attestation into the UM-before-
UIM case where they are less constrained.

In fact, there is a “fourth” ordering relationship for the two
measurements, that in which no precise order is specified in the
construction of the compound evidence. This approach disadvan-
tages the appraiser and relying party, as it removes any possibility
of reasoning about the trustworthiness of evidence based on the
context in which measurements were taken.

As this discussion illustrates, the adversary’s ability to avoid
detection is most constrained when deeper components, those in
positions of higher protection or greater trust, measure shallower
ones before these perform their own measurements.

One may wonder how the runtime states of UIM or the attesting
host’s kernel might also be represented in evidence. In particular,
the kernel must provide a clean runtime context for UIM, UM and
TP to run in their regular states. By the same token, a corrupt ker-
nel might be able to misrepresent the runtime state of any process,
leaving little value in evidence produced on such a host. For more
complex layered attestations or ones with more stringent assur-
ance requirements, it is desirable to obtain a runtime measurement
of the kernel that may be incorporated into evidence about shal-
lower components the kernel supports. These kernel measurements
would be backed by a hardware root-of-trust assumed to be beyond
the adversary’s ability to corrupt. Prior work has shown how the
construction and deployment of a software kernel integrity monitor
is practical and can promote greater assurance in the fidelity of
evidence [Loscocco et al. 2007].

6 EVIDENCE STRUCTURE
Trustworthiness of an attestation depends on more than measure-
ment evidence. The same evidence created in two different orders
might provide different opportunities for a malicious actor to go
undiscovered by the attestation. Given the importance of the order
evidence is generated, the appraiser must have a way of determin-
ing the order in compound evidence. Additionally, when different
entities were responsible for portions of the evidence, the appraiser
must knowwhat entity produced each portion. Compound evidence
must contain not only the underlying measurement evidence, but
also meta-evidence that allows an appraiser to determine evidence
gathering order and the party responsible for its gathering.

Consider again the example from the previous section of an
attestation that produces two evidence values: one generated by a
Userspace Measurer (UM) about the integrity of a target process
(TP) and the other generated by a Userspace Integrity Monitor
(UIM) about the integrity of UM. Since it is better to measure UM
before it performs its measurement of TP, the compound evidence
should reflect this order. There are several ways to structure the
compound evidence for this purpose.

An orchestration agent on the attester may be responsible for
coordinating the workflow. It could first make a request to UIM,
resulting in evidence c1. Then it could initiate ameasurement by UM
resulting in evidence c2. The orchestration agent would then create
a compound evidence c = c1; c2 whose structure indicates that c1
was generated before c2. This could be a simple concatenation of the
two evidence values, or it could rely on some other syntactic marker
like “;” to distinguish it from compound evidence in which the sub-
evidence values were generated simultaneously such as c = c1 |c2.
In this approach, the appraiser must trust the orchestrating agent
to honestly report the order of the workflow it managed, since a
corrupted orchestrating agent could simply lie about the order it
dictated.

A different approach would be for UIM to hand its evidence c1
directly to UM who would be responsible for generating the com-
pound evidence. It might be c = c1; c2 as in the previous approach.
Or it might be something more along the lines of c2(c1) in which
the evidence c2 incorporates evidence c1 as an argument. In either
case, if c1 is not integrity protected, the appraiser must trust UM
not to tamper with it. If c1 is integrity protected, the appraiser need
not place the same level of trust in UM. Nevertheless, it might still
be possible for UM to create evidence c2 based on an old (or even
fabricated) measurement. This would be a way in which the ap-
praiser might be fooled by a corrupt UM about the order of evidence
generation.

In the two examples, the structure of compound evidence implies
the shape of the workflow employed to construct them. They entail
different trust relationships in order for the appraiser to believe
that the reported order of evidence generation was actually im-
plemented. It is this evidence structure that enables the relying
party to ensure it uses the evidence correctly in support of the trust
decision being made.

7 MECHANISM FLEXIBILITY
When integrating attestation mechanisms into a system, it may
be possible to settle on a single workflow shape that will be suffi-
cient to support the trust decision for the particular use case being
considered. There might be homogeneity in the attesting systems
where evidence generation is uniformly producing the same type
of evidence. The appraisal process would likewise be uniform and
enables a simple input to the attestation policy of the relying party.
Unfortunately, it is not likely to be so straightforward.

In practice, multiple workflow shapes will be necessary, mandat-
ing flexible mechanisms for attestation. Different attesting systems
have different attestation mechanisms. This causes the content and
structure of evidence and meta-evidence to vary. Even when attest-
ing systems for all intents and purposes are identical, appraisal may
demand varying types and depths of evidence and meta-evidence
as attesters may differ in relevant attributes such as whether or not
they fall within a particular administrative domain. Such variation
can impact the outcome of trust decisions. The appraisal process
will need to be able to handle the variety.

Variability will be needed on attesting systems as well because
theywill likely be required to perform attestations in support ofmul-
tiple use cases. The different use cases may have different shapes
and even when they share a common shape, different types of
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evidence may be required. As was the case for appraisal, a seem-
ingly identical use case may require different shapes because of
attributes of the relying party, as different evidence or structure
may be needed.

This argues for flexibility in attestation mechanisms in both
attesting and appraisal systems. Theymust be able to support varied
workflow shapes for the use cases where they are expected to
participate. The mechanisms should allow attesters and relying
parties to request and perform those measurements necessary for
the current situation dictated by the use case, and should prevent
duplication and fragmentation of attestations.

Ideally, there should be an attestation service that supports var-
ious forms of attestations capable of generating all necessary ev-
idence and meta-evidence. It must be able to support appraisal
processes for all types of evidence necessary to the desired use
cases and respond to relying parties in a manner appropriate to
associated trust decisions. The mechanisms should be extensible so
that new workflow shapes can be added when new cases arise.

Flexibility demands that there be a way of deciding on a work-
flow shape to use for any given situation. Requests for attestations
must indicate what shape is desired, making it imperative there
be a way to precisely specify what is required, requirements for
evidence and structure of any compound evidence. There must be
agreement between attester and appraiser that the proper shape
and compatible mechanisms have been selected by both.

Another compelling reason to make selection a core component
is to allow selective information release. Attestation evidence is
sensitive information about a system and should not be released to
a remote party indiscriminately. A system’s willingness to release
sensitive information depends on who the potential recipient is and
why it is needed. Similarly, a decision about what to require from
an attestation also depends on who is attesting and the reason. The
trust decision made relies on both. When selection is independently
governed by local policy at each end, only attestations consistent
with both policies can proceed.

For any given attestation situation, selection policies at attesting
and appraising systems might be coordinated a priori to guarantee
identical selections. However, as the attestation service is gener-
alized to be extensible and enable a wide variety of selection al-
ternatives, analyzing and managing all local policies to ensure the
best selection quickly becomes unmanageable. Instead as part of
the selection process, it will be necessary for both sides to negoti-
ate a protocol that satisfies goals of the competing interests of the
attester’s privacy versus the appraiser’s desire for as much relevant
evidence as possible for trust inferences.

Flexible attestation mechanisms require a means of precisely
specifying workflow shapes, including the types and structure of
evidence. Having a declarative language to describe the workflows
enables unambiguous intent of a given workflow to be captured and
shared. It can be the basis of analysis to ensure that workflows meet
the trust requirements of supported use cases. Requests for attesta-
tions can include language expressions that clearly describe desired
workflows. Selection policies can be expressed in terms of work-
flow descriptions in a common language with exact meaning. These
same expressions facilitate negotiation as workflow preferences and
alternatives can be included in proposals and counter-proposals.

Any attestation mechanisms, and especially a flexible and exten-
sible attestation service, is necessarily a privileged entity that must
have access to sensitive parts of a system. Special care must be taken
to ensure secure integration into the system. Policy configurations
must be carefully specified and protected from unauthorized modi-
fication. Sound security principles, like least privilege, should be
applied to ensure that components, especially those like evidence
collectors requiring higher privileges, do not enable system compro-
mise. Failure will lead to the flexible attestation service becoming a
vector for system compromise rather than a means of enhancing
trust.

8 POLICY-BASED NEGOTIATION
The goal of negotiation should be the successful selection of an
attestation workflow that mutually satisfies each participant’s re-
quirements as expressed in the local policies. Before an attestation
can proceed the negotiation mechanism must establish agreement
on the precise sequence of evidence collection and cryptographic
operations that will create the structured evidence that the appraisal
mechanisms expect and can correctly interpret in support of the
trust decision for the requested situation.

For negotiation to work, selection policies reflecting the partic-
ular goals of each party need to be established. It is assumed that
attesters will guard the release of evidence just as appraisers will
desire maximum disclosure. Selection policies may specify more
than one possible selection, possibly indicating a preferred order.
The negotiation service strives for a selection that will find the best
fit satisfying both sides. Failure to agree on a selection should be
treated differently than an appraisal failure as participating parties
may wish to take different actions.

There are many ways that negotiation could take place. A sim-
ple example could be that a relying party requests an attestation
for a specified situation, passing relevant information to both the
attesting and appraising systems where each consults a local selec-
tion policy. From there a series of proposals and counter-proposals
would hopefully result in a mutually satisfactory selection. Upon
agreement both sides dispatch the appropriate mechanisms to exe-
cute the selected workflow. Although illustrative, this simple ap-
proach is too inefficient for actual use.

ISAKMP [Maughan et al. 1998] is a good starting point for the
creation of a negotiation service. ISAKMP is an established proto-
col used to negotiate cryptographic associations that could easily
be adapted for attestations. It is a two-phase negotiation protocol
that first does a key exchange to establish a security association
between the participants and then performs actual negotiation.
The security association provides a secure session on which nego-
tiation can proceed and provides necessary information about a
peer that is useful input to the selection process. The negotiation
phase is a simple proposal consisting of a list of acceptable choices
followed by a selection that is assumed to be mutually agreeable.
From there, compatible mechanisms are dispatched to execute the
selected workflow.

Negotiation using the ISAKMP model works as follows. On re-
quest for an attestation, a security association is established and
used to communicate the requested attestation situation. It can
also convey other relevant input to selection not already available
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from the security association. Selection policies expressed using a
declarative attestation orchestration language as suggested in the
previous section are consulted. The initiator creates an ordered list
of acceptable alternatives from its policy. Each element of the list is
the workflow description expressed in that language. The proposal
is sent to the peer who then chooses the best alternative matching
expressions selected from its policy. Selection policies should never
include unacceptable choices as they could be selected. Similarly,
selection policies should never include selections that cannot be
fulfilled. A failure of negotiation is preferred over either of these
outcomes.

ISAKMP has several useful, applicable optimizations. Both the
security associations and the results of previous negotiations are
cached creating the possibility that the security association estab-
lishment and/or the actual negotiation might be bypassed. These
caches are checked at appropriate points during execution with
results of cache hits used in subsequent stages. This is particularly
useful when attestations are frequent or when results of negotia-
tions can be predicted and preloaded into the caches. They are also
useful when attestation workflows include additional parties. Sepa-
rate negotiations would be required to ensure proper mechanism
selection at every party. The ability to establish ongoing relation-
ships with other parties and have the previous results present in
the cache certainly benefits performance. Examples of such parties
include third-party appraisers or other attestation entities involved
with collecting meta-evidence.

9 AN ATTESTATION PROTOCOL LANGUAGE
Previous sections argued for an attestation protocol language and
showed that attestation services could benefit from one. This section
expands on the need for such a language and describes properties
that it should have. We propose Copland [Ramsdell et al. 2019], a
domain specific specification language that was designed for this
purpose and with those properties in mind. A protocol writer must
provide answers to many questions when defining a protocol for
collecting evidence about a complex, layered system:

• Who measures what?
• In what order should measurements be taken?
• Which measurements should be packaged together?
• Which locations should be allowed to transfer sensitive evi-
dence?

• When should evidence be signed and by whom?

Encoding this information in procedural code makes the proto-
col difficult to understand and get right. Such an encoding is also
brittle in the face of changing requirements, especially if the people
updating the policy are not the same as the original authors. To
address this problem we propose declarative specifications whose
interpretation is formally verified.

Attestation workflows have a structure that can be described by
a machine-readable language. There are entities that are making
and responding to requests. There are relations between entities
that describe message exchanges. The content of messages can
be abstracted to include what is essential to determine when a
workflow achieves a desired goal, describe attestation policies, and
define relationships between workflows.

A declarative description of workflows based on a machine-
readable language is a desirable way to capture the variety of attes-
tation possibilities. In addition to simply describing workflows the
language must have the following properties:

• It should eliminate ambiguity, allowing different parties to
agree on what each specification means.

• It should be modular in the evidence being requested.
• It should be capable of expressing the protocol structure of
the requests and replies among the various parties.

• It should be able to express both control flow and data flow
requirements.

• It should be able to express requirements for how compos-
ite evidence is bundled and given integrity/confidentiality
protections.

• It should support modular specifications, not just simple
names for complex interactions.

Copland is a protocol language capable of expressing complex
interaction patterns in a modular style. It is a machine-readable
language with an abstract, formal semantics specifying remote
execution, ordering, and transformation of protocol to evidence.
Most significantly Copland is parameterized over work to perform
making it highly flexible and retargettable across many application
domains.

Semantically, a Copland expression defines the mapping from
input evidence to some output evidence via one or more attestation
events. Each event occurs as a result of action taken by a well-
defined principal. Events involve taking measurements, signing or
hashing evidence, or routing evidence to produce combinations of
evidence.

Principals in the specification language are logical components
that participate in the specified attestation. Note that labels such
as attester, appraiser and relying party are more appropriately
identified with roles, not principals. A single principal may act in
several roles over the course of an attestation.

Expressions in Copland are called phrases. The basic unit of any
phrase is a measurement. In this context measurements represent
any action taken by a principal that generates or consumes evidence.
Ameasurement always produces at least the evidence that states the
measurement occurred. Measurements are represented as arbitrary
text strings that are meant to be descriptive of the actions they
designate. The value of a phrase is the type of evidence it produces.

Discrete measurements have the form (M P T) where M names
the measurement, P is the place where the measurement target
resides, and T is the measurement target. When the measuring and
measured principals are the same or when a given measurement
action has no target the principal and target parameters may be
omitted.

Discrete measurements are composed using three operators, ->,
< and ~. Given measurementsM1 andM2:

• The phrase M1->M2 indicates that M1 is taken before M2
and that evidence produced byM1 is passed directly as input
to M2. The result of M1 logically appears in the resultant
evidence as part ofM2’s output evidence.

• The phraseM1+<+M2 indicates thatM1 is taken beforeM2
and the two resultant evidence artifacts are composed se-
quentially according to some bundling strategy for doing so.
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The + on either side of the < operator indicate that bothM1
andM2 receive any evidence provided as input to this phrase
(for instance, when it is a subterm of a larger phrase). By con-
trast,M1-<-M2 indicates that neither measurement receives
the input evidence. Both +<- and -<+ are also possible.

• The phraseM1+~+M2 indicates thatM1 andM2 are taken in
parallel (unconstrained precedence) and their results com-
posed to indicate parallel measurement according to some
bundling strategy. Both M1 and M2 also receive any input
evidence. The variants +~-, -~+, -~- are also possible.

The notation @P[M] requests that phraseM be executed at place
P . Copland places identify principals with the ability to execute
phrases. Similarly, the notation *P,n:M indicates that P will runM
initialized with optional nonce, n. The * notation cannot be nested
and must be the outermost construct.

Finally, several discrete actions are available for generating meta-
evidence or transforming evidence. One is used throughout this
paper. The ! signs its input with the private key associated with
the executing place. Thus @P:m->! results in m signed with P’s
private key. Additionally, _, # and {} define copy, hash, and null
respectively.

The syntax presented above was motivated by our formal analy-
sis work. In the tradition of mathematics, it is concise. But some
users find it too concise. We expect the syntax of Copland will
evolve and become more user-friendly as we gain experience with
the language.

10 ATTESTATION PROTOCOL EXAMPLES
Common attestation workflows or shapes provide motivation for
using a language like Copland. We examine several shapes, each
one typifying a common attestation pattern, and demonstrate how
to express these using Copland. Some examples use Copland to
explore variations on phrases with the same shape but different
trust properties. The formal semantics of Copland are designed
to support formal analyses of workflows expressed as Copland
phrases.

Three roles recur throughout the examples. The relying party
role identifies the principal depending on the trust assessment.
The attester role identifies the principal providing evidence for
appraisal. The appraiser role identifies the principal evaluating
evidence resulting from an attestation. Often the appraiser and
relying party roles are performed by the same principal. Such a
principal requests an attestation, appraises the evidence, and makes
a trust decision based on the results of appraisal.

Certificate-Style
In the certificate-style remote attestation topology, an attester sub-
mits evidence to an appraiser and obtains in return a “certificate,”
an unforgeable, authoritative evidence artifact summarizing the
results of appraising the submitted evidence. The attester may then
provide the certificate to a relying party to facilitate a trust decision.
The attester may obtain a certificate before receiving an attestation
request from a relying party or in response to such a request. As the
following variations illustrate, the relying party’s decision-making
should take this difference into account.

P2
Appraiser

P1
Attester

P0
Relying
Party

3:certificate(n)

1:n

4:certificate(n)

2:evidence(n)

Figure 5: Certificate-Style.

Figure 5 depicts a remote attestation scenario where a relying
party depends on a logically separate appraiser to evaluate evidence
produced by an attester. The relying party and attester both trust
the appraiser to appraise evidence fairly and report the results of
verification accurately.

The shape in Figure 5 depicts the variation in which the attester
obtains the certificate in response to a request from the relying party.
The attestation begins when the relying party makes an initial re-
quest to the attester that includes a nonce n. In response, the attester
generates the requested evidence, cryptographically incorporating
n, and submits the evidence to the appraiser. In Figure 5, this evi-
dence is represented as evidence(n), indicating that it is bound to
n. The appraiser appraises the evidence and, in the case that it is
acceptable, generates a verification result called certificate(n)
in Figure 5 attesting to this fact for the relying party’s consumption.
This certificate is also bound to n, enabling the relying party to
check that it was generated recently. The appraiser sends the cer-
tificate to the attester, who completes the attestation by forwarding
the certificate to the relying party.

In Copland, this attestation may be expressed as:
*P0,n: @P1[(attest P1 sys) ->

@P2[(appraise P2 sys) ->
(certificate P2 sys) ]]

As in Figure 5, this phrase associates the relying party with prin-
cipal P0, the attester with P1 and the appraiser with P2. A request
bound to nonce n is generated by P0. The result of this, n, is sent
to P1, who passes it as input to its attestation system. The action
(attest P1 sys) consumes n and produces evidence(n), the
evidence that is bound to n. This evidence is sent to P2, where
it is consumed by (appraise P2 sys). This action produces
an appraisal result, which, if merited, is passed as input to the
(certificate P2 sys) action that generates the certificate on it.
This sequential composition of the appraise and certificate ac-
tions reflects the fact that the certificate is only generated after the
attester’s evidence has been appraised and found to be acceptable.
The certificate action might be as simple as the appraiser signing
the results of appraisal. In this case the Copland phrase has the
form:
*P0,n: @P1[(attest P1 sys) ->

@P2[(appraise P2 sys) -> ! ]]



Flexible Mechanisms for Remote Attestation

The pipeline of the appraise and certificate actions trans-
forms the attester’s evidence into an authoritative verification re-
sult. The certificate is bound to n because the appraisal results,
via their dependence on the attester’s evidence, are. The square
brackets show that P1 receives the (certificate P2 sys) re-
sult from P2 after it sends (attest P1 sys) to P2 and that P0
receives certificate(n) from P1 after the rest of the attestation
has occurred, exactly as shown in Figure 5.

This example shows how a common remote attestation topology
may be compactly encoded in an appropriate specification language
like Copland. The relying party may use a phrase like this one to
request recent evidence from the attester.

P2
Appraiser

P1
Attester

P0
Relying
Party

2:certificate

3:n

4:certificate(n)

1:evidence

Figure 6: Cached Certificate-Style.

Figure 6 shows a reworking of this example in which the attester
can obtain a certificate before it is requested by a relying party.
In this scenario, the attester caches the certificate and replies to
requests from relying parties by quoting from this cache. This
variant may be expressed as:
*P1:(attest P1 sys) ->

@P2[(appraise P2 sys) -> (certificate P2 sys)] ->
(store P1 cache)

*P0,n:@P1[((retrieve P1 cache) -<+ _) -> !]

Each of P0, P1 and P2 acts in the same role as before. Here, how-
ever, two distinct Copland phrases are used: one for P1’s certificate
interaction with P2 and another for the request made by P0 to P1
for attestation. These phrases execute independently, permitting
the execution shown in Figure 6 where the certificate is obtained
before the attestation request. In particular, this means the relying
party’s nonce is not cryptographically bound to the attester’s ev-
idence. As a result, the relying party is only guaranteed recency
of the attester’s response, not of the certificate (or the results of
appraisal it certifies) contained in the response.

Background Check
Figure 7 depicts a background check remote attestation topology.
In contrast to the certificate-style topology, in which the attester
submits its evidence to the appraiser directly, here the attester
submits its evidence to the relying party to forward to the appraiser
on its behalf.

P2
Appraiser

P1
Attester

P0
Relying
Party

1:request(n)

2:evidence(n)

4:result(n)

3:evidence(n)

Figure 7: Background Check.

The principals P0, P1 and P2 in the attestation act in the same
roles as before. The relying party again includes a nonce n with its
request to obtain a measure of recency. The attester performs some
local measurement that generates evidence evidence(n) bound
to the relying party’s nonce. The attester then sends evidence(n)
to the relying party, who forwards it to the appraiser P2. The ap-
praiser verifies the attester’s evidence and generates new evidence
summarizing the results of appraisal, denoted by result(n) in
Figure 7. The appraiser then sends result(n) to the relying party,
completing the attestation. That n is bound to evidence(n) and
result(n) permits the relying party to check the recency of both.

The Copland phrase for this topology is:

*P0,n: @P1[(attest P1 sys)] -> @P2[(appraise P2 sys)]

P0 begins the attestation with a request bound to the nonce n.
This request feeds directly into P1’s attestmeasurement, introduc-
ing the desired dependency on n. The result of attest is returned
to P0, who forwards it to P2 to perform the appraise operation
and generate result(n). Finally, the result of the appraise action
is returned to P0, completing the interaction.

This example demonstrates an instance of a simple topology
translating straightforwardly into a simple, recognizable Copland
phrase.

Parallel Mutual Attestation
Figure 8 depicts a remote attestation topology where two principals,
P0 and P1, act as relying party and attester at different points in
a mutual attestation. P0 and P1 rely on a shared appraiser, shown
as principal P2. Each of P0 and P1 wish to request attestation from
the other under a background check topology mediated by the
shared appraiser. This topology may be expressed in Copland in
two phrases, each representing one principal’s attestation to the
other. Literally, these are two background check protocols run in
parallel with a shared appraiser:

*P0,n0: @P1[(attest01 P1 sys)] ->
@P2[(appraise01 P2 sys)]

*P1,n1: @P0[(attest10 P0 sys)] ->
@P2[(appraise10 P2 sys)]
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P2
Appraiser

P0 P1

request01(n0)

evidence01(n0)

request10(n1)

evidence10(n1)

result01(n0)
evidence01(n0)

result10(n1)
evidence10(n1)

Figure 8: Parallel mutual attestation.

The first phrase shows P0 acting in the role of relying party
and P1 in the role of attester, and the second phrase has these as-
signments reversed. In the phrases and Figure 8, attest01 is the
measurement performed by P1 when P0 requests an attestation
from it bound to nonce n0, and evidence01(n0) is the evidence pro-
duced by thatmeasurement (analogously for evidence10). Likewise,
appraise01 is the appraisal action P2 performs on evidence01(n0),
and result01(n0) is the evidence generated by P2 based on appraisal
results. (analogously for appraise10 and result10(n1)). The two
halves of this mutual attestation execute independently in parallel,
that is, in no particular order.

This example shows how Copland phrases usually reflect the
symmetry and complexity of the topologies they describe. Some
care is needed during negotiation to ensure precedence relation-
ships are specified correctly, especially where bottom-up guarantees
are desired. The example also demonstrates the distinction between
roles and the principals who execute them. Over the course of an
attestation, a single principal may act in multiple roles.

Layered Background Check
Figure 9 shows a more complicated background check-style topol-
ogy implementing a layered attestation. The relying party P0 issues
a request for attestation bound to a nonce n to an attester P1 and
sends collected evidence bound to n to a trusted appraiser P2 for
appraisal. The appraiser sends the results of appraisal to the relying
party for use in a trust decision.

In this example the attestation is layered rather than performed
exclusively by P1. Here, P1 gathers and composes evidence from
two different targets by sending attestation requests to P3 and P4
and composing results. These layered attesters, P3 and P4, behave as
any attesters by responding to the request with attestation evidence.
P1 bundles that evidence along with evidence it may have gathered
and returns the bundle to the relying party.

The relying party P0 need only know it needs evidence from
P1 and nothing about P3 or P4. P1’s local privacy policy specifies
what it is willing to reveal, and P0’s local policy determines what

protocol best suits its needs. Only the appraiser P2 need understand
the attestation result. P1 may go so far as to encrypt evidence to
prevent access by P0.

This example topology in Figure 9 may be expressed in Copland
as:

*P0,n: @P1[(attest P1 sys) ->
(attest P3 att) ->

(attest p4 att)
+~+
(@P3[(attest P3 sys)]

+~+
@P4[(attest P4 sys)]) ->
@P2[(appraise P2) -> !]]

Attestation begins with a nonce-bound request from relying
party P0 to attester P1. P1 performs attest on itself followed by
off-platform attestations of P3 and P4’s attestation subsystems. In
parallel, P1 requests P3 and P4 perform attest on themselves. The
intention of this topology is to gather evidence from P3 and P4 to
establish each can be trusted to attest to its own state. P1 receives
evidence and bundles it with its own evidence. This bundling of P1,
P3 and P4’s outputs is represented in Figure 9 as bundle(n) and
has the form:

bundle(n) = evidence(n) | (evidence3(n) | evidence4(n))

Parallel composition in the Copland phrase allows attestation
on P1, P3 and P4 to occur in any order. This is indicated in the
bundled evidence by the | composition operator. When appraising
bundle(n), the parallel bundling operator indicates that no order-
ing may be assumed on the gathering of evidence. This in turn
limits what appraisal can reveal about how attestation constrains
an adversary.

Parallel composition of P1’s evidence with P3 and P4’s implies
P1’s attestation of P3 and P4 might have occurred after P3 and
P4 performed their attestations. Thus, P1’s evidence says nothing
about P3 and P4 at the time they perform their attestations. This is
critical, as an adversary may have corrupted and repaired P3 or P4
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Figure 9: Layered background check.

before P1’s attestation. While running in parallel should improve
runtime performance, it does so at the cost of assurance.

A minor modification of the phrase forces P1’s attestation to
occur first:

*P0,n: @P1[(attest P1 sys) ->
(attest P3 att) ->

(attest p4 att)
+<+

(@P3[(attest P3 sys)]
+~+

@P4[(attest P4 sys)]) ->
@P2[(appraise P2) -> !]]

The change from parallel to sequential composition means that
P1 must complete its work before P3 and P4 can start. The new
evidence bundling has the form:

bundle(n) = evidence(n) ; (evidence3(n) | evidence4(n))

allowing the appraiser to conclude that evidence(n) was gathered
first and describes the state of P3 and P4 prior to their local attesta-
tions. While an adversary may run an attack between attestations,
this protocol makes the adversary’s task more difficult. Ensuring
P1 completes its work immediately before P3 and P4 start could
eliminate even this contingency [Rowe 2016b].

The layered background check example illustrates many founda-
tional attestation principles.

• Precise semantics for phrases supports informed negotiation
among appraisers and targets. The Copland representations
are more detailed and precise than the diagrams, allowing
the relying party and attester to interpret and negotiate
protocols. The first protocol takes less time to complete, but
places fewer constraints on an adversary.

• Order matters when appraising evidence and assessing how
attestation constrains an adversary. A simple ordering change
significantly changes constraints that appraisal places on an

adversary. The first protocol allows a longer window for at-
tack and guarantees less about the attestation infrastructure
in P3 and P4.

• Flexible mechanisms allow both parallel and sequential or-
dering without modifying the attestation infrastructure. Sim-
ple changes in protocol structure allow different attestation
shapes. Reasoning about those shapes is performed at a
higher abstraction level.

• Evidence structure and meta-evidence allow the appraiser
to make relatively stronger conclusions about the appraisal
target. Concluding from evidence structure that attestation
of P3 and P4 occurs prior to their local attestation allows the
appraiser to make stronger conclusions about the overall
system.

11 RELATEDWORK
Our work follows principles set forth by Coker et al. [2011] in
their description of remote attestation. They define an architecture
centered on an attestation manager integrating measurements and
executing attestation using an attestation protocol. Throughout
their work they emphasize the need for flexible attestation mecha-
nisms, a major goal of this work.

Prior theoretical work by Rowe [2016a,b] explores properties
of layered attestation as presented specifically in section 10 and
more generally across all presented examples. Layered attestation
describes how collections of attestation assets are together used
to establish trust in a system and is essential for addressing any
multi-component system or systems that depend on others. Rowe
describes how adversaries are constrained differently by different
layering structures and how evidence must be composed to accu-
rately reflect attestations.

The Linux Kernel Integrity Measurer (LKIM) [Loscocco et al.
2007] is a retargetable contextual measurer for kernel modules.
LKIM exemplifies the kind of flexible measurement capability re-
quired by this approach. However flexible they might be, LKIM and
similar tools target operating system measurement specifically and
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cannot easily be generalized to implement attestation architectures
discussed here.

Maat [Pendergrass et al. 2018] and [Petz and Alexander 2019] are
prototype attestation frameworks implementing the Copland ap-
proach. Maat [Pendergrass et al. 2018] is an open source prototype
platform service built to explore and demonstrate the properties
necessary for a centralized measurement and attestation service.
The use cases presented here comprise a non-exhaustive list of
those that have been explored during the development of the Maat
prototype, and serve as further illustration of the flexibility required
for a centralized attestation service. Maat attestation managers rely
on selection policy and negotiation in order to select a Copland
phrase and its accompanying measurement agent to best suit the
needs of the current attestation scenario.

Petz and Alexander [2019] implement a Copland attestation
manager in Haskell used extensively for prototyping basic Copland
capabilities. They define a JSON exchange format for Copland pro-
tocols and evidence and implement communication among multiple
attestation managers. Mechanisms for dispatching work to mea-
surement capabilities allow customization for specific applications.

Other attestation frameworks related to this work include Trusted
Network Connect (TNC) [TCG 2012], SAMSON [Fisher et al. 2012],
and OpenAttestation [IBM 2015]. Each framework provides mech-
anisms for executing measurements, a protocol for creating and
exchanging evidence bundles, and mechanisms for appraising the
results of protocol execution. Most provide a mechanism for plug-
ging in customized measurement and appraisal capabilities. The
lone exception being OpenAttestation where measurements are
hard-coded. However, all are less general than the approach pre-
sented here. None have the concept of place or that one place may
measure another’s resources. None support changing roles or the
definition of attestation shapes. Their protocol languages are ad
hoc and tightly focused on appraisal of a single environment.

SAMSON (secure authentication modules) [Fisher et al. 2012]
appraises client machines in a distributed computing environment.
The appraiser is the SAMSON application while systems being
appraised are clients. There is no mechanism for changing roles or
defining different attestation architectures.

OpenAttestation [IBM 2015] is an extension to the popular Open-
Stack [Sefraoui et al. 2012] virtualization environment that provides
an attestation capability. OpenAttestation uses an approach simi-
lar to Haldar et al. [2004] where the virtualization infrastructure
directly supports the attestation process. However, OpenAttesta-
tion hard-codes its measurement and appraisal capabilities, making
negotiation about protocol and implementation difficult.

Trusted Network Connect (TNC) [TCG 2012] is an attestation
framework defined by the Trusted Computing Group (TCG) as a
part of their suite of trusted computing capabilities. TNC centers
on the implementation of a plug-and-play integrity measurement
system. Integrity Measurement Collectors (IMCs) and Integrity
Measurement Verifiers (IMV) define measurement and appraisal
capabilities. The TNC client performs attestation by calling a pre-
defined set of IMCs to gather attestation evidence. The TNC server
executes a corresponding set of IMVs to appraise resulting evidence.
Like Copland, IMC and IMV instances can communicate via a spe-
cialized protocol, TNCCS. In this way the client plays the role of
attester while the server plays the role of appraiser. TNC provides

some of the same flexibility of Copland and certainly more than
OpenAttestation or SAMSON. However, roles are predefined, and
defining attestation shapes is done in an ad hoc fashion.

12 CONCLUSION
Establishing trust among systems is critically important in today’s
distributed computing environments. From simple authentication
to mutual appraisal among complex layered systems, trust is es-
sential. We present a flexible mechanism for remote attestation
that centers on coordinating attestation and appraisal tasks among
various system actors including attesters, appraisers, and relying
parties. Based on the Copland attestation protocol language, this
mechanism supports representing, reasoning about, and executing
attestation protocol shapes for a variety of attestation tasks.

To support our claim, we represented several common attestation
shapes showing how Copland precisely represents remote attes-
tation tasks. We modeled certificate-based and background check-
style attestations, then used those shapes as a basis for caching
attestation results, layering attestation and bundling evidence, and
mutual attestation among parties. We discussed how shapes are
parameterized over work and how negotiation instantiates a shape
with specific implementations for its tasks.

Work on attestation systems using Copland is accelerating. Sys-
tems such as Maat and the Haskell Attestation Manager have been
constructed and empirically evaluated. New implementations are
emerging that use Copland’s formal semantics to construct ver-
ified systems on the seL4 [Klein et al. 2010] microkernel using
CakeML [Kumar et al. 2014]. Each of these implementations pro-
vides building blocks for constructing remote attestation systems
ranging from simple peer-to-peer attestation to complex, layered
systems where precision and flexibility are critical.
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