
Security Goals and Evolving Standards

Joshua D. Guttman, Moses D. Liskov, and Paul D. Rowe
{guttman,mliskov,prowe}@mitre.org

The MITRE Corporation

Abstract. With security standards, as with software, we cannot expect
to eliminate all security flaws prior to publication. Protocol standards
are often updated because flaws are discovered after deployment. The
constraints of the deployments, and variety of independent stakehold-
ers, mean that different ways to mitigate a flaw may be proposed and
debated.
In this paper, we propose a criterion for one mitigation to be at least
as good as another from the point of view of security. This criterion is
supported by rigorous protocol analysis tools. We also show that the
same idea is applicable even when some approaches to mitigating the
flaw require cooperation between the protocol and its application-level
caller.

1 Introduction

Security standards, which often contain errors, evolve over time as people correct
them. Often, their flaws may be discovered after considerable product deploy-
ment, which places great pressure on the choice of mitigation. The constraints
of the operational deployments and the need to satisfy the various stakeholders
involved is crucial, but so is a precise understanding of the attack and what it
enables.

How are we to choose among various proposed alternatives for mitigating a
flaw? A security flaw is a failure of the protocol to meet a goal—possibly one
not well understood until after the flaw becomes apparent—and a revised under-
standing of the goals of the protocol is necessary to ensure that the mitigation is
secure. Obviously, satisfying a goal that was not previously met is essential to any
mitigation. However, any two alternatives both of which eliminate a particular
insecure scenario may not have equivalent security implications.

In this paper, we describe a formal language for expressing protocol security
goals that supports “enrich-by-need” analysis tools such as the Cryptographic
Protocol Shapes Analyzer (cpsa) [18]. We will use it to guide our description,
even though there are other tools that are using other versions of enrich-by-
need [5, 13].

Each “enrich-by-need” analysis process starts from a scenario containing some
protocol behavior, and also some assumptions about freshness and uncompro-
mised keys. The analysis returns a set of result scenarios that show all of the min-
imal, essentially different ways that the starting scenario could happen. When

the starting scenario is undesirable (e.g. a confidentiality failure), we would like
this to be the empty set. When the starting scenario is the behavior of one
principal, then the results indicate what authentication guarantees the protocol
ensures.

For each run of the analyzer, there is a formula expressing the security goal
that the analysis justifies. These security goals are independent of the particular
protocol variant described.

Our contributions. We make two main contributions in this paper. First, we
show how to compare security consequences by analyzing alternatives in a formal
framework. The protocol analyses determine a partial order on protocols. When
one protocol Π1 is above another protocol Π2 in this order, that means that Π1

achieves at least as much security as Π2 with regard to the starting scenario of
the analysis.

Second, we show that our techniques are flexible enough to accommodate
a variety of viewpoints on the protocol and its goals during the remediation
discussion. Whether an attack represents a flaw in the protocol, or a flaw in
the interface between protocol and application, or perhaps some mixture of the
two, is often debatable. Our techniques may apply to a model of the protocol
at any level of detail, and we describe how models that include interfaces relate
to models that do not. A model of this sort may help to clarify what goals are
important for a protocol to offer to the applications that use it.

Structure of this paper. In Section 2, we consider the Kerberos public key
extension PKINIT. The initial version contained a flaw allowing a man-in-the-
middle attack. Two alternatives emerged to fix this. We describe how to evaluate
them with cpsa and the security goal language it suggests, giving a clear result:
From the security point of view, the choices are equally good. In Section 3,
we explain the core ideas of cpsa, which motivates our choice of protocol goal
languages in Section 4.

In Section 5, we turn to cross level issues, illustrated with the TLS vulnera-
bilities arising from renegotiation. One natural diagnosis of this flaw is that the
higher-level application is not aware enough of how the API it uses engages in
the TLS protocol. In Section 6, we show that our techniques support discussion
at this level also. Higher-level goals can thus be described purely in terms of
observable application behavior.

2 Example: Kerberos PKINIT

PKINIT [22] is an extension to Kerberos [17] that allows a client to authenticate
to the Kerberos authentication server (KAS) and obtain a ticket-granting ticket
using public-key cryptography. This is intended to ease the management burden
of establishing shared secrets (specifically passwords) and maintaining them,
which the standard Kerberos exchange requires.

Cervesato et al. found a flaw in PKINIT version 25 [4], which was already
widely deployed. The flaw was eventually fixed in version 27. Figure 1 shows

2

C
[tC ,n2]sk(C),C,T,n1 //

��

KAS

��
• •

{|[k,n2]sk(K)|}pk(C),C,TGT,{|AK,n1,tK ,T |}koo

Fig. 1. PKINIT version 25, where TGT = {|AK,C, tK |}kT

C
[tC ,n2]sk(C),C,T,n1 //

��

I
[tC ,n2]sk(I),I,T,n1 //

��

KAS

��
• •
{|[k,n2]sk(K)|}pk(C),C,TGT,{|AK,n1,tK ,T |}koo •

{|[k,n2]sk(K)|}pk(I),I,TGT,{|AK,n1,tK ,T |}koo

Fig. 2. Attack on flawed PKINIT, where TGT = {|AK, I, tK |}kT

the expected message flow between the client and the KAS in v. 25. The client
provides the KAS with its identity C, the identity T of the server it would like
to access, and a nonce n1. It also includes a signature over a timestamp tC
and a second nonce n2 using the client’s private key sk(C). The KAS replies
by creating a fresh session key k, signing it together with the nonce n2 and
encrypting the signature using the client’s public key pk(C). It uses the session
key k to protect another session key AK to be used between the client and
the subsequent server T , together with the nonce n1 and an expiration time tK
for the ticket. The ticket TGT is an opaque blob from the client’s perspective
because it is an encryption using a key shared between K and T . It contains AK,
the client’s identity C and the expiration time tK of the ticket.

In Cervesato et al.’s attack [4] (Fig. 2), an adversary I has obtained a private
key to talk with the KAS. I uses it to forward any client C’s initial request,
passing it off as a request from I. I simply replaces C’s identity with I’s own,
re-signing the timestamp and nonce n2. When the KAS responds, I re-encrypts
the response for C, this time replacing the identity I with C. In the process, the
adversary learns the session key k, and thus can also learn the subsequent session
key AK. This allows the attacker to read any subsequent communication between
the client and the next server T . Moreover, the adversary may impersonate the
ticket granting server T to C, because C believes the only other entity with
knowledge of AK is T .

The attack arises from a lack of cryptographic binding between the session
key k, and the client’s identity C [4]. When C completes the two-message ex-
change, although she knows the KAS must have recently produced the keying
material (due to the binding between k and n2), it would be incorrect to con-
clude that the KAS intended the key to be used by C. Identifying this as the
root cause of the attack suggests a natural fix, namely including the client’s

3

C
[tC ,n2]sk(C),C,T,n1 //

��

KAS

��
• •

{|[k,F (C,n2)]sk(K)|}pk(C),C,TGT,{|AK,n1,tK ,T |}koo

Fig. 3. Generic fix for PKINIT

identity C in the signed portion of the second message. Indeed this is the first
suggestion in [4].

The authors of the PKINIT standard offered a different suggestion. For rea-
sons of operational feasibility more than security, the PKINIT authors suggested
replacing n2 with a message authentication code over the entirety of the first
message, keying the MAC with k. Since the client’s identity is contained in the
first message, this proposal also creates the necessary cryptographic binding be-
tween k and C.

Cervesato et al., working with a manual proof method, opted to verify a
generic scheme for mitigating the attack, ensuring that the two proposals were
instances of the scheme. This allowed them to avoid the time-consuming process
of writing proofs for any other proposals that might also fit this scheme. They
verified that the attack is prevented if n2 is replaced with any expression F (C, n2)
that is injective on those values (i.e. F (C, n2) = F (C ′, n′2) implies C = C ′ and
n2 = n′2).

We obtain the first proposal by instantiating F as the identity: F (C, n2) =
(C, n2). The second proposal results by instantiating F as the MAC of the client’s
request: F (C, n2) = Hk([tC , n2]sk(C), C, T, n1). Since the MAC provides second
preimage resistance, the injectivity requirement holds with overwhelming prob-
ability (Fig. 3).

The PKINIT parable illustrates recurring themes in protocol standard de-
velopment and maintenance. Frequently, attacks show us that we care about
previously unstated, unrecognized security goals. PKINIT does achieve some
level of authentication, but it fails a more stringent type of authentication. In
Lowe’s terms [12], PKINIT achieves recent aliveness for both the client and
the KAS because each party signs time-dependent data. However, PKINIT fails
weak agreement which requires each side to know the other party was engaged in
the protocol with them. When we see the attack, it forces us to identify explicitly
the goal that the flawed protocol does not meet.

But an attack itself does not uniquely identify a security goal. We learned
that it is important for the client to be guaranteed that it agrees with the KAS
on the client’s identity, but what about other values such as the expiration
time of the ticket? Operational difficulties might arise if the client is unaware
of this expiration time, but are there any security consequences? Indeed a key
contribution of [4] is to state carefully what security goal the repair provides.

4

This goal can be achieved by different mitigations. Issues of efficiency, ease
of deployment, or robustness to future protocol modifications may influence var-
ious stakeholders to prefer different mitigations. In our PKINIT example, the
researchers opted for a change that was minimally invasive to their formal rep-
resentation, thereby highlighting the root cause of the problem. The protocol
designers had more operational context to constrain the types of solutions they
deemed feasible.

While a pair of choices might both manage to satisfy some stated security
goal, one of them may actually satisfy strictly stronger goals than another. We
propose a goal language (Section 4) to express when a protocol mitigation is
at least as good as a competitor—or strictly better than it—from the security
point of view.

3 Enrich-by-need protocol analysis

Our approach to protocol analysis is based on what we call the “point-of-view
principle.” Most of the security goals we care about in protocol design and anal-
ysis concern the point of view of a particular participant P . P knows that it has
sent and received certain messages in a particular order. P may be willing to
assume that certain keys are uncompromised, which for us means that they will
be used only in accordance with the protocol in question. And P may also be
willing to assume that certain randomly chosen values will not also be indepen-
dently chosen by another participant, whether a regular (compliant) participant
including P itself on another occasion, or an adversary.

The protocol analysis question is, given these facts and assumptions, what
follows about what may happen on the network? These conclusions are of two
main kinds. Positive conclusions assert that some regular participant Q has taken
protocol actions. These are authentication goals. They say that P ’s message
transmissions and receptions authenticate Q as having taken some corresponding
actions, subject to the assumptions. Negative conclusions are generally non-
disclosure assertions. They say that a value cannot be found available on the
network in a particular form; often, that a key k cannot be observed unprotected
by encryption on the network.

Skeletons and Cohorts. The enrich-by-need process starts with a representa-
tion of the hypothesis. We will refer to these representations of behavior and as-
sumptions as skeletons A. The skeleton A0 we start from includes some behavior
of P , together with the stipulated assumptions. At any point in the enrich-by-
need process, we have a set S of skeletons to work with. Initially, S = {A0}.

At each step, we select one of these skeletons A ∈ S, and ask if the behavior of
the participants recorded in it is possible. When a participant receives a message,
then the adversary should be able to generate that message, using messages that
have been sent earlier, without violating the assumptions. In this case, we regard
that reception as “explained,” since we know how the adversary can arrange to
deliver the expected message. We say that that particular reception is realized.

5

When every reception in a skeleton A is realized, we call A itself realized. It then
represents—together with behavior that the adversary can supply—a possible
complete execution. We collect the realized skeletons in a set R.

If the skeleton A ∈ S we select is not realized, then we use a small number
of rules to generate an enrichment step. An enrichment step takes one unre-
alized reception and considers how to add some or all of the information that
the adversary would need to generate its message. It returns a cohort of skele-
tons, meaning a finite set {A1, . . . ,Ai} of skeletons which together supply this
information to the adversary in all of the ways that the regular participants
could supply it. We update S by removing A and adding the cohort members:
S ′ = (S \ {A}) ∪ {A1, . . . ,Ai}.

As a special case, a cohort may be the empty set, i.e. i = 0, and in this case
A is discarded and nothing replaces it. This occurs when there are no possible
behaviors of the regular participants that would explain the required reception.
Then the skeleton A cannot contribute any executions (realized skeletons).

This process may not terminate, and in fact the underlying class of problems
is undecidable [9]. However, when it does terminate, it yields a finite set R of re-
alized skeletons with a crucial property: For a class of security goals, if they have
no counterexample in the set R, then the protocol really achieves that goal [11].
Moreover, we can inspect the members of R and determine whether any of them
is a counterexample. We call the members of R shapes, and they represent the
minimal, essentially different executions consistent with the starting point.

Enrich-by-need protocol analysis originates with Meadows’s NPA [13]. Dawn
Song’s Athena [20] applied the idea to strand spaces [21]. Two systems in use
currently that use the enrich-by-need idea in a form close to what we describe
here are Scyther [5] and CPSA [18]. See [10, 11] for a comprehensive discussion,
and for more information about our terminology here.

In particular, we will use the term regular strand to mean a local run of a
particular principal in a single compliant local session of a protocol. A regular
strand (or often, we will just say strand) contains a sequence of transmission
and reception actions. We will refer to any one of these actions as a node.

Example 1: Initiator’s Authentication Guarantee in PKINIT. Suppose
that the client C has executed a strand of the client role in the fixed PKINIT,
where for now we will instantiate F (C, n2) = (C, n2). Suppose also that we
are willing to assume that the authentication server K has an uncompromised
signature key sk(K). We annotate this assumption as sk(K) ∈ non, meaning
that sk(K) is non-compromised.

•
��

//

• oo

Client[C,K,T, n1, n2, tC, tK, k,AK] sk(K) ∈ non

(1)

This is our starting point A0. C receives a message that contains the digital
signature [k, (C, n2)]sk(K), and we know that the adversary cannot produce this

6

because sk(K) is uncompromised. Thus, this second node of the local run is
unrealized.

To explain this reception, we look at the protocol to see what ways a regular
participant might create a message of the form [k, (C, n2)]sk(K). In fact, there is
only one. Namely, the second step of the KAS role does so. Knowing the KAS
sends this signature means it will agree on the parameters used: K, k,C, n2.
However, we do not yet know anything about the other parameters used in K’s
strand. They could be different values t′C , T

′, n′1, TGT
′, AK ′, t′K . Thus, we obtain

a cohort containing a single skeleton A1 that includes an additional KAS strand
with the specified parameters.

sk(K) ∈ non

•
��

// // •
��

• oo •oo

Client[C,K, T, n1, n2, tC , tK , k, AK] KAS[C,K, T ′, n′
1, n2, t

′
C , t

′
K , k, AK

′]

(2)

This skeleton is now already realized, because, with this weak assumption, the
adversary may be able to use C’s private decryption key to obtain k and modify
the authenticator {|AK,n1, tK , T |}k as desired. The adversary might also be able
to guess k, e.g. if K uses a badly skewed random number generator. Similarly,
the components that are not cryptographically protected are under the power of
the adversary.

We can we now re-start the analysis with two additional assumptions to
eliminate these objections. First, we add sk(C) to non. Second, we assume that
K randomly generates k, and we write k ∈ unique, meaning that k is chosen at
a unique position. We are uninterested in the negligible probability of a collision
between k and a value chosen by another principal, even one chosen by the
adversary.

sk(K), sk(C) ∈ non k ∈ unique

•
��

// // •
��

• oo •oo

Client[C,K, T, n1, n2, tC , tK , k, AK] KAS[C,K, T ′, n′
1, n2, t

′
C , t

′
K , k, AK

′]

(3)

This skeleton is not realized, because with the assumption on sk(C), the adver-
sary cannot create the signed unit [t′C , n2]sk(C); it must come from a compliant
principal. Examining the protocol, this can only be a client strand with matching
parameters C, n2, t′C , i.e. a local run Client[C,K ′′, T ′′, n′′1 , n2, t

′
C , t
′′
K , k

′′, AK ′′].
Curiously, there are two possibilities now. This strand could be identical with
the one already in the diagram, in which case the doubly-primed parameters are
identical with the unprimed ones. Or alternatively, it might be another client
strand that has also by chance selected the same n2, since we have not assumed
n2 ∈ unique. In this case, the doubly-primed variables are not constrained. If we

7

further add the assumption that n2 ∈ unique, then the second client strand must
coincide with the first.

In all of these cases, C and K do not have to agree on TGT , since this item
is encrypted with a key shared between K and T , and C cannot decrypt it or
check any properties about what he receives.

This summary of enrich-by-need protocol analysis illustrates several impor-
tant points. Authentication properties are built up by successive inferences of
regular behavior, driven by some message component the adversary cannot build.
When two inferences are possible the method branches, potentially resulting in
a set of outputs. Various levels of authentication may be achieved according to
which parameters principals agree on, and which parameters may vary. Secrecy
properties are met when we can infer that no execution is compatible with the
disclosure of the secret.

More formally, there is a notion of homomorphism between skeletons [10].
Given a starting point A0, with shapes C1, . . . ,Ci, for each Cj , there is a homo-
morphism Hj from A0 to Cj . Moreover, every homomorphism K : A0 → D from
A0 to a realized skeleton D agrees with at least one of the Hj . Specifically, we
can regard K as the result of adding more information after one of the Hj . We
mean that we can always find some J : Cj → D such that K is the composition
K = J ◦Hj .

4 A Language of Protocol Goals

Shape analysis formulas. The pattern of enrich-by-need protocol analysis
suggests how to express the security properties of protocols. These security prop-
erties are essentially implications, that say that if the circumstances described
in the starting point A0 hold, then some further information must hold. Given a
skeleton, we can summarize all of the information in it in the form of a conjunc-
tion of atomic formulas. We call this formula the characteristic formula for the
skeleton, and write cf(A). Thus, a cpsa run with starting point A0 is essentially
exploring the security consequences of cf(A0).

When cpsa reports that A0 leads to the shapes C1, . . . ,Ci, it is telling us
that any formula that is true in all of these skeletons, and is preserved by ho-
momorphisms, is true in all realized skeletons D accessible from A0. The set
of formulas preserved by homomorphism are called positive existential, and are
those formulas built from atomic formulas, ∧,∨, and ∃. By contrast, formulas
using negation ¬φ, implication φ =⇒ ψ, or universal quantification ∀y . φ are
not always preserved by homomorphisms.

Thus, the disjunction of the characteristic formulas of the shapes C1, . . . ,Ci
tell us just what security goals A0 leads to. However, we can be somewhat more
precise. The skeleton Cj may have nodes that are not in the image of A0, and it
may involve parameters that were not relevant in A0. Thus, A0 will not deter-
mine exactly which values these new items take in Cj , e.g. which session key is
chosen on some local run not present in A0. Thus, these new values should be
existentially quantified. Effectively, these are all the variables that do not appear

8

in cf(A0). Thus, for each Cj , let yj list all the variables in cf(Cj) that are not in
cf(A0). Let x list all the variables in cf(A0). Then this run of cpsa has validated
the formula:

∀x . (cf(A0) =⇒
∨

1≤j≤i

∃yj . cf(Cj)) (4)

The conclusion
∨

1≤j≤i ∃yj . cf(Cj) is the strongest formula that is true in all of
the Cj .

We call the formula (4) the shape analysis formula for this run of cpsa. In
the special case where i = 0, so that the conclusion of the implication is the
empty disjunction, (4) is ∀x . cf(A0) =⇒ false, or equivalently ∀x . ¬cf(A0), since
the empty disjunction is the constantly false formula.

The goal language GL(Π). So far, we have discussed characteristic formulas
without concern for the vocabulary we use to build them. We choose a vocab-
ulary that is motivated by the kinds of analysis cpsa does. In particular, it is
adapted to expressing which instances of roles have occurred, and how far each
has progressed. It also allows us to say what value each parameter takes; we have
already seen that a prime category of flaw occurs when local runs that should
agree on a parameter do not. The language also expresses the orderings among
events, and assumptions on uncompromised keys and fresh values.

However, it is also designed to have the minimum possible expressiveness.
It contains no arithmetic; it contains no inductively defined data-types such as
terms; and it has no ability to describe the syntax of messages. As a consequence,
its formulas are preserved under a class of “security preserving” transformations
between protocols [11]. Also, for interesting restricted classes of protocols, the
set of security goals they achieve is decidable [8]. These properties require careful
control over expressiveness.

In this language, we may summarize Eqn. (1) by the formula:

ClientDone(n) ∧ Peer(n,K) ∧ Non(sk(K)) (5)

This asserts of a node n that it completes a client run, i.e. it is the second event
on that local run. It also asserts that the peer parameter of this node n is a name
K such that the signature key of K is non-compromised. The letters n,K here
are free variables, and this formula is satisfied under an assignment of values to
the free variables if those values have the properties we mentioned. A precise
semantics is given in [11].

Observe that we don’t have to say ClientStart(m), referring to the first
node of the run. The presence of a second node ensures that the previous step
occurred, and we don’t need to say anything in particular about it.

Turning to Eqn. (2), the conjuncts of Eqn. (5) still hold. There is however
also another strand, which is a complete KAS run. We also know that several
of its parameters agree with those of C:

(5) ∧ Self(n, c)∧ AuthNonce(n, n2) ∧
KASDone(m) ∧ Self(m,K)∧ AuthNonce(m,n2) ∧ (6)

Peer(m, c)∧ Preceq(m,n)

9

The shape analysis formula that results has a single disjunct in the conclusion:

∀n,K . (5) =⇒ ∃m, c, n2 . (6) (7)

More generally, suppose that we are given a protocol Π. It has a number of
roles, and each of its roles has a number of nodes. For each of these nodes, the goal
language GL(Π) has a role position predicate. The two predicates ClientDone(n)
and KASDone(m) used above are examples. Each one is a one-place predicate that
says what kind of node its argument n,m refers to.

On each node, there are parameters. The parameter predicates are two place
predicates. Each one associates a node with one of the values that has been
selected when that node occurs. For instance, Self(n, c) asserts that the self
parameter of n is c. This allows us to assert agreement between different strands.
Peer(m, c) asserts that m appears to be partnered with the same principal who
is in fact the self parameter of n.

The role position predicates and parameter predicates vary from protocol
to protocol, depending on how many nodes the protocol has, and how many
parameters. The predicate names may be chosen as convenient. For instance, we
may choose to use the same predicates for two different protocols, using this to
emphasize structural similarities between them.

All protocols also have some shared common vocabulary (summarized in
Table 1) that helps to express the structural properties of bundles. Preceq(m,n)
asserts that one node occurs before another; Coll(m,n) says that they lie on the
same strand. Non(v) and Unq(v) express non-compromise and freshness (unique
origination). pk(a) and sk(a) relate a principal to its keys, ltk(a, b) represents
the long-term key of two principals, and inv(k) is the inverse of a key.

Functions: pk(a) sk(a) inv(k)
ltk(a, b)

Relations: Preceq(m,n) Coll(m,n) =
Unq(v) UnqAt(n, v) Non(v)

Table 1. Protocol-independent vocabulary of the languages GL(Π)

Using shape analysis formulas to evaluate alternatives. We now return
to the intuitive notions of “good enough” and “as good as” and describe how
these notions can be rigorously reflected through a combined understanding of
shape analysis formulas and goal languages.

The notion of “good enough”, naturally, is to be defined relative to a goal or
set of goals. A protocol Π is good enough if all the required goals are satisfied
in all executions. Each goal is of the form

∀x . (Φ =⇒
∨

1≤j≤i

∃yj . Ψj) (8)

10

where Φ and Ψ are conjunctions of atomic formulas of the goal language GL(Π).
We can evaluate whether Π achieves the goal by running cpsa starting from
a suitable skeleton, the “characteristic skeleton” of Φ. If some Ψj is satisfied in
each of the resulting shapes, the goal is achieved.

“At least as good as.” We relativize our definition of one protocol being at
least as good as another to a particular hypothesis Φ. This hypothesis should
be a formula of both GL(Π1) and GL(Π2). In that case, Π2 is at least as good
as Π1 relative to the hypothesis Φ if, for every goal of the form ∀x̄ . Φ =⇒

∨
Ψj

with this hypothesis Φ, if Π1 achieves this goal, then so does Π2.
We can write Π1 �Φ Π2 to mean that Π2 is at least as good as Π1 relative

to Φ.
Two protocols are equally good relative to Φ if each is at least as good as the

other relative to it.
We can establish Π1 �Φ Π2 from shape analysis formulas. Φ determines a

skeleton A0 in protocol Π1 and a skeleton B0 in protocol Π2. Suppose the set
of shapes for A0 are C1, . . . ,Cn, and the set of shapes for B0 are D1, . . . ,Dm. If
the disjunction of the characteristic formulas of the Di entails the disjunction of
the characteristic formulas of the Cj , then Π1 �Φ Π2:∨

i≤m

∃yi . cf(Di) =⇒
∨
j≤n

∃zj . cf(Cj). (9)

If Π1 achieves a goal ∀x̄ . Φ ⇒ Ψ , then
∨
j≤n ∃zj . cf(Cj) =⇒ Ψ . Hence, Π2

achieves the goal also, because in protocol Π2,

∀x̄ . Φ⇒
∨

1≤i≤n

∃yi . cf(Di)

⇒
∨

1≤j≤m

∃zj . cf(Cj) ⇒ Ψ

5 Example: TLS Renegotiation

Our method gives a good criterion for deciding that two protocols are equally
good—or one is at least as good as the other—relative to a hypothesis Φ. But as
described, this method applies if the fix consists of internal protocol modifications
only. In the remainder of this paper, we would like to consider the possibility
that the fix involves both modifying the protocol and also the information that
it passes up to the application on behalf of which it is acting. Thus, part of the
resolution is for the application to use this additional information correctly, so
as to achieve its security goals. The underlying protocol is obligated to provide
it with accurate information, and signaling when relevant events occur. We start
with an example.

Transport Layer Security (TLS) [7] is a globally deployed protocol designed to
add confidentiality, authentication and data integrity between two communicat-
ing applications. It is secure, scalable, and robust enough to protect e-commerce

11

transactions performed over HTTP. Despite the success of TLS it has been forced
to evolve over time, in part due to the discovery of various flaws in the design
logic.

One such flaw, discovered in 2009 by Marsh Ray, concerns renegotiating TLS
parameters. It works on the boundary between the TLS layer and the application
layer it supports. [19] contains a good description of the flaw; we give a brief
summary.

Client Attacker Server
------ ------- ------

<----------- Handshake ---------->
<======= Initial Traffic ========>

<--------------------- Handshake ============================>
<=================== Client Traffic ==========================>

Fig. 4. TLS renegotiation attack

Fig. 4 (borrowed from [19]) is a high-level picture of the attack. The at-
tacker first creates a unilaterally authenticated session with the server in the
first handshake. Thus, the server authenticates itself to the attacker, but not
vice versa. The attacker and server then exchange initial traffic protected by
this TLS session. Later, a renegotiation occurs, possibly when the application
at the server requires mutual authentication for some action. The attacker then
allows the client to complete a handshake with the server, adding and removing
TLS protections. The client’s handshake occurs in the clear (depicted by <-->
in Fig. 4), while the server’s handshake is protected by the current TLS session.
The attacker has no access to this newly negotiated session, but the server may
retroactively attribute data sent in the previous session to the authenticated
client. The server may then perform a sensitive action in response to a request
sent by the attacker, but based on the credentials subsequently provided by the
client. Which level is to blame for this attack?

– Does TLS fail to achieve a security goal that it should achieve?
– Or should the application take responsibility? It accepts some data out of

a stream that is not bilaterally authenticated, and lumps it with the future
data which will be bilaterally authenticated.

– Or is there shared responsibility? Perhaps TLS should provide clearer indi-
cations to the application when a change in the TLS properties takes place,
and then the application should heed these indications.

In fact TLS was updated with a renegotiation extension [19]. TLS renegoti-
ation now cryptographically binds the new session to the existing session. If a
server completes a mutually authenticated renegotiation with a client, then the
current session was also negotiated with the same client. However, the authors
of [19] also note:

12

While this extension mitigates the man-in-the-middle attack described
in the overview, it does not resolve all possible problems an application
may face if it is unaware of renegotiation.

As Bhargavan et al. [2]’s recent attacks showed, the practically important issue
was not in fact resolved by this.

However, for applications to take partial responsibility, some signals and com-
mands must be shared between TLS and the application. Enrich-by-need pro-
tocol analysis—coupled with our goal language—fits in naturally here. With a
little effort the goal language can be updated to address the multilayer nature
of flaws such as this.

6 Goals for Protocol Interfaces

We now describe how to express protocol goals to make cross-level choices ex-
plicit.

The job of TLS, acting in either direction, is to take a stream of data from
a transmitting application, and to deliver as much as possible of this stream
to the receiving application. When the sender is authenticated to the receiver,
TLS guarantees that the portion delivered is an initial segment of what the
authenticated sender transmitted. When the mode offers confidentiality, no other
principal should learn about the content (as opposed to the length).

Naturally, these goals are subject to the usual assumptions, such as that the
certificate authorities are trustworthy, that the private keys are uncompromised,
and that randomness was freshly chosen.

When a renegotiation occurs, this affects what the application should rely
on. If a handshake authenticates a client identity C, then the authentication
guarantee should apply to the data starting when the cipher spec changes. We
will call the period starting from a cipher spec change, and lasting until the next
one (if any) an epoch, and part of the work of a handshake is to agree on an
epoch ID between the endpoints. Thus, any guarantee should apply throughout
an epoch. Authentication guarantees for the Client Traffic should definitely not
apply to the Initial Traffic of Fig. 4, which lies on the other side of an epoch
boundary from the authenticated traffic.

The interface between the protocol and its application, then, is an essential
part of expressing the guarantees that the application should rely on. We can
enlarge our notion of “protocol” to include signals across the API as well as the
message roles. This enlarged protocol can itself be used to define a goal language.
Some goal formulas refer only to API events and their parameters, not to the
nuts-and-bolts events of the core protocol itself. These formulas express API-level
goals. They are of course true only if the lower level protocol behaves properly.
However, their content speaks explicitly only about the events of interest to the
upper level.

Such a language allows us to apply our notions of “good enough” and “at
least as good as”, showing that they are relevant to our enlarged, API-aware
protocols.

13

Representing APIs. An API is a set of signals and commands that may occur
in a certain pattern, between an application and the service that implements the
API. In our case, the service directly controls actual protocol interactions. The
API thus consists of the signals (from service to application) and commands
(from application to service), and how the reception of those signals and com-
mands line up with the implemented protocol behavior.

The communication between service and application is of a different nature
than the communication that takes place in protocol execution: in particular, this
communication is not observable or controllable by a typical network adversary.

We enlarge our notion of the protocol to one that includes the signals and
commands as well as how they interact with protocol messages. This enlarged
notion of the protocol allows us to describe a goal language. In that language, an
application goal is a goal expressible in terms directly referring to application-
level roles.

Enrich-by-need analysis for APIs. In order to evaluate “good enough” or “as
good as” for application goals, we need an enrich-by-need analysis that respects
the distinct nature of communication between the API and the protocol service.
There is some recent research on analyzing protocols with state that could be
relevant. But no special machinery is required beyond protocol messages: all we
need to do is emulate the information passed between application and service as
a secure channel independent from all others involved in the protocol.

Let Π be a protocol. An API-enhanced version of Π is a protocol Π ′ that
has a set of new nodes api such that the result of omitting the nodes api from
Π ′ yields Π. A goal formula Φ is an API goal if it refers only to nodes in api,
and their parameters.

If Φ is an API goal then its truth or falsehood can be established by an
appropriate enrich-by-need analysis of Π ′. In other words, “good enough” can be
established through enrich-by-need analysis just as was the case for protocol-level
goals.

Furthermore, for any particular API goal, its antecedent references a certain
subset of API role events and variables. Thus, it can be meaningful to compare
two APIs (even for exactly the same underlying protocol) in terms of goals that
are API goals for both APIs. In such circumstances, our notion of “as good as”
applies here.

TLS renegotiation, revisited. Now we state an example of an application-
level goal for TLS that addresses the interface concerns specific to the rene-
gotiation flaw. In particular, the authors of [19] point out the dangers of an
application being unaware of renegotiation. The flaw that arises from the rene-
gotiation attacks is most easily understood from the application level. Here, we
describe that goal in a formal manner.

The application is aware of data being exchanged over a TLS connection,
and may also query for the status of the connection. Consider the following set
of predicates:

– DataSend(n): a command was issued at node n to send data over TLS.

14

– DataRecv(n): a signal was received at node n that data was received from
TLS.

– DataVal(n, d): d is the data involved in the DataSend or DataRecv event
occurring at node n.

– Self(n, ID): ID is the identifier of the actor at node n.
– Status(n): a status signal was received at node n about a TLS connection.
– EID(n, eid): eid is the epoch ID involved in the DataSend, DataRecv, or

Status event occurring at node n.
– Client(n, cID): cID is either the ID of the client reported as the authenti-

cated client in a status event, or “anon” otherwise.
– Server(n, sID): sID is the ID of the server reported in a status event.

Informally, the goal we will describe is that if the server receives d over some
TLS connection, and also gets a report about the status of that same connection,
then either the status report identifies the client as anonymous, or the identified
client actually sent the data d. Formally,

DataRecv(n) ∧ DataVal(n, d) ∧ Self(n, s) ∧ EID(n, eid),

∧ Status(m) ∧ Server(m, s) ∧ Client(m, c) ∧ EID(m, eid)

⇒ c = “anon” ∨
∃n′ : DataSend(n′) ∧ Self(n′, c) ∧ DataVal(n′, d) ∧ EID(n′, eid)

for all values of the free variables.
Here the first line of the hypothesis assumes that a data reception signal

occurred for s at node n, involving data d, epoch identifier eid. The second line
assumes that a status was checked for epoch identifier eid, and the signal was
received at node m and indicates that the client is c and the server is s. If both of
these conditions are met for a common eid, the goal states that either c is “anon”
(indicating that the client is not authenticated), or otherwise that the client c
actually sent d. This last claim is the mirror-image of the first line: namely, that
a data transmission command occurred for c at node n, involving data d and
epoch identifier eid.

Note that the goal does not specify that Preceq(m,n): in other words, the
status may be reported even after the data is received and we still expect the
status to reflect an accurate assessment of the identity of the client if the client
is not anonymous. This is precisely what goes wrong in the renegotiation attack:
the adversary initiates an anonymous session, causes data to be received, and
then convinces an honest client to renegotiate the session so that it is later
reported as authenticated.

Goals and mandates. Describing the goal for TLS at this level is natural,
but the discussion ultimately must match the mandate of the standard itself: to
specify the actual protocol messages and to advise about how applications are
to be informed on its use. Delving into details of the interface, in this case, is not
appropriate (but if it was, the notions of “good enough” and “as good as” apply
just as well to the more complex interface-inclusive protocol model). However,

15

stakeholders present in the discussion will be able to comment on the constraints
they are under.

One particular constraint is that a TLS API will ultimately aim to set up a
simple type of data stream functionality in which status issues are separated from
data signals. In other words, the Status and DataRecv events cannot occur at
the same node. Another important constraint is that status reports be limited to
a current status, so that the API is not responsible for maintaining an exhaustive
status history.

7 Related Work and Conclusion

The full literature on the use of formal methods for analyzing cryptographic
protocols is too vast to summarize here, although we would direct the reader
to [15] for a (now classic) survey. As methods and tools have become more
developed, they have been effectively applied to the analysis of published stan-
dards, demonstrating their maturity and applicability [14, 16, 1, 2, 4]. Many of
these efforts have explicitly engaged with the the relevant standards body to
ensure their input was reflected in the standard.

We are not the only ones to propose a logical language of security goals.
Numerous efforts attempt to use a formal logic in which to reason directly about
cryptographic protocols [3, 6]. While they do provide formal statements of secu-
rity goals, the proof methods do not lend themselves to natural comparisons of
the goals that various protocols might achieve. [12] contains a hierarchy of au-
thentication goals demonstrating the relationship between the goals themselves,
and [5, 1] integrate the hierarchy with an enrich-by-need analysis method.

The process of standardizing cryptographic protocols is both difficult and
important. Getting a variety of stakeholders to converge on a single point of
view requires careful consideration of all proposed options and a clear way of
comparing them. Although many unchangeable constraints exist pertaining to
issues such as efficiency, computational limitations, or backwards compatibility,
the security of the designed protocol is typically of paramount importance. Un-
fortunately, the term “security” can mean different things in different contexts.
A clear and precise formulation of the security requirements of a protocol can
help focus group discussions on the precise outcomes that it is most important
for a protocol to achieve. It can also help to distinguish those constraints that
pertain to security from operational constraints, allowing committees to better
understand the space of trade-offs for design decisions.

In this paper we demonstrated how automated tools based on formal methods
can assist in this complicated decision-making process. We presented a formal
language in which to express security goals. We focused on how the enrich-by-
need method of protocol analysis integrates with this goal language and demon-
strated its applicability to the historical case of mitigating a flaw in the PKINIT
protocol. We then demonstrated how the goal language might be adapted to
accommodate goals that lie at the intersection of security protocols and the ap-

16

plications they support, reinforced by the example of a previously discovered
flaw in TLS renegotiation.

While we believe the goal language paired with enrich-by-need protocol anal-
ysis is particularly interesting, we also believe other formal languages and tools
could be used in a quite similar way. The precision and clarity that comes from
the abstraction of formal methods must be balanced against the practical con-
siderations of potential implementations. We present here a vision for how the
results of formal analyses can be incorporated with real-world decision making
processes to focus discussion and strengthen the security of the resulting stan-
dards.

References

1. David A. Basin, Cas Cremers, and Simon Meier. Provably repairing the ISO/IEC
9798 standard for entity authentication. Journal of Computer Security, 21(6):817–
846, 2013.

2. Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Alfredo
Pironti, and Pierre-Yves Strub. Triple handshakes and cookie cutters: Breaking
and fixing authentication over TLS. In IEEE Symposium on Security and Privacy,
2014.

3. Michael Burrows, Martín Abadi, and Roger Needham. A logic of authentication.
ACM TRANSACTIONS ON COMPUTER SYSTEMS, 8:18–36, 1990.

4. Iliano Cervesato, Aaron D. Jaggard, Andre Scedrov, Joe-Kai Tsay, and Christopher
Walstad. Breaking and fixing public-key Kerberos. Inf. Comput., 206(2-4):402–424,
2008.

5. Cas Cremers and Sjouke Mauw. Operational Semantics and Verification of Security
Protocols. Springer, 2012.

6. Anupam Datta, Ante Derek, John C. Mitchell, and Arnab Roy. Protocol compo-
sition logic (PCL). Electr. Notes Theor. Comput. Sci., 172:311–358, 2007.

7. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878,
6176.

8. Daniel J. Dougherty and Joshua D. Guttman. Decidability for lightweight Diffie-
Hellman protocols. In IEEE Symposium on Computer Security Foundations, 2014.

9. Nancy Durgin, Patrick Lincoln, John Mitchell, and Andre Scedrov. Multiset rewrit-
ing and the complexity of bounded security protocols. Journal of Computer Secu-
rity, 12(2):247–311, 2004. Initial version appeared in Workshop on Formal Methods
and Security Protocols, 1999.

10. Joshua D. Guttman. Shapes: Surveying crypto protocol runs. In Veronique Cortier
and Steve Kremer, editors, Formal Models and Techniques for Analyzing Security
Protocols, Cryptology and Information Security Series. IOS Press, 2011.

11. Joshua D. Guttman. Establishing and preserving protocol security goals. Journal
of Computer Security, 22(2):201–267, 2014.

12. Gavin Lowe. A hierarchy of authentication specification. In CSFW, pages 31–44,
1997.

13. C. Meadows. The NRL protocol analyzer: An overview. The Journal of Logic
Programming, 26(2):113–131, 1996.

17

14. Catherine Meadows. Analysis of the Internet Key Exchange Protocol using the
NRL Protocol Analyzer. In IEEE Symposium on Security and Privacy, pages
216–231, 1999.

15. Catherine Meadows. Formal methods for cryptographic protocol analysis: Emerg-
ing issues and trends. IEEE Journal on Selected Areas in Communications,
21(1):44–54, 2003.

16. John C. Mitchell, Arnab Roy, Paul Rowe, and Andre Scedrov. Analysis of EAP-
GPSK authentication protocol. In ACNS, pages 309–327, 2008.

17. C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The Kerberos Network Authen-
tication Service (V5). RFC 4120 (Proposed Standard), July 2005. Updated by
RFCs 4537, 5021, 5896, 6111, 6112, 6113, 6649, 6806.

18. John D. Ramsdell and Joshua D. Guttman. CPSA: A cryptographic protocol
shapes analyzer, 2009. http://hackage.haskell.org/package/cpsa.

19. E. Rescorla, M. Ray, S. Dispensa, and N. Oskov. Transport Layer Security (TLS)
Renegotiation Indication Extension. RFC 5746 (Proposed Standard), February
2010.

20. Dawn Xiaodong Song. Athena: A new efficient automated checker for security
protocol analysis. In Proceedings of the 12th IEEE Computer Security Foundations
Workshop. IEEE CS Press, June 1999.

21. F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces:
Proving security protocols correct. Journal of Computer Security, 7(2/3):191–230,
1999.

22. L. Zhu and B. Tung. Public Key Cryptography for Initial Authentication in Ker-
beros (PKINIT). RFC 4556 (Proposed Standard), June 2006. Updated by RFC
6112.

18

