
Enrich-by-need Protocol Analysis for
Diffie-Hellman

Moses D. Liskov, Joshua D. Guttman, John D. Ramsdell,
Paul D. Rowe, and F. Javier Thayer?

The MITRE Corporation

Abstract. Enrich-by-need analysis characterizes all executions of a se-
curity protocol that extend a given scenario. It computes a strongest se-
curity goal the protocol achieves in that scenario. cpsa, a Cryptographic
Protocol Shapes Analyzer, implements enrich-by-need analysis.
In this paper, we show how cpsa now analyzes protocols with Diffie-
Hellman key agreement (DH) in the enrich-by-need style. While this
required substantial changes both to the cpsa implementation and its
theory, the new version retains cpsa’s efficient and informative behavior.
Moreover, the new functionality is justified by an algebraically natural
model of the groups and fields which DH manipulates.
The model entails two lemmas that describe the conditions under which
the adversary can deliver DH values to protocol participants. These lem-
mas determined how cpsa handles the new cases. The lemmas may also
be of use in other approaches.
This paper is dedicated to Cathy Meadows, with warmth and gratitude.

1 Introduction

Diffie-Hellman key agreement (DH) [8], while widely used, has been challeng-
ing for mechanized security protocol analysis. Some techniques, e.g. [12,7,22,15],
have produced informative results, but focus only on proving or disproving indi-
vidual protocol security goals. A protocol and a specific protocol goal are given
as inputs. If the tool terminates, it either proves that this goal is achieved, or
else provides a counterexample. However, constructing the right security goals
for a protocol requires a high level of expertise.

By contrast, the enrich-by-need approach starts from a protocol and some
scenario of interest. For instance, if the initiator has had a local session, with a
peer whose long-term secret is uncompromised, what other local sessions have
occurred? What session parameters must they agree on? Must they have hap-
pened recently, or could they be stale?

Enrich-by-need protocol analysis identifies all essentially different smallest ex-
ecutions compatible with the scenario of interest. While there are infinitely many
possible executions—since we put no bound on the number of local sessions—
often surprisingly few of them are really different. The Cryptographic Protocol
Shapes Analyzer (cpsa) [24], a symbolic protocol analysis tool based on strand

? Email: mliskov, guttman, ramsdell, prowe@mitre.org

spaces [27,13,18], efficiently enumerates these minimal, essentially different ex-
ecutions. We call the minimal, essentially different executions the protocol’s
shapes for the given scenario.

Knowing the shapes tells us a strongest relevant security goal, i.e. a formula
that expresses authentication and confidentiality trace properties, and is at least
as strong as any one the protocol achieves in that scenario [14,23]. Using these
shapes, one can resolve specific protocol goals. The hypothesis of a proposed
security goal tells us what scenario to consider, after which we can simply check
the conclusion in each resulting shape (see [25] for a precise treatment).

Moreover, enrich-by-need has key advantages. Because it can also compute
strongest goal formulas directly for different protocols, it allows comparing the
strength of different protocols [25], for instance during standardization. More-
over, the shapes provide the designer with visualizations of exactly what the
protocol may do in the presence of an adversary. Thus, they make protocol anal-
ysis more widely accessible, being informative even for those whose expertise is
not mechanized protocol analysis.

In this paper, we show how we strengthened cpsa’s enrich-by-need analysis
to handle DH. We will not focus on the underlying theory, which is presented at
length in a report [17]. Instead, we will focus here on how cpsa uses that theory.
It is efficient, and has a flexible adversary model with corruptions.

Foundational issues needed to be resolved. Finding solutions to equations in
the natural underlying theories is undecidable in general, so mechanized tech-
niques must be carefully circumscribed. Moreover, these theories, which include
fields, are different from many others in security protocol analysis. The field ax-
ioms are not (conditional) equations, meaning that they do not have a simplest
(or “initial”) model for the analysis to work within. Much work on mechanized
protocol analysis, even for DH relies on equational theories and their initial
models, e.g. [12,7,22,15]. However, an analysis method should have an explicit
theory justifying it from standard mathematical structures such as fields. cpsa
now has a transparent foundation in the algebraic properties of the fields that
DH manipulates. This extends our earlier work [11,16].

Contributions. In this paper, we describe how we extended cpsa to analyze
DH protocols. cpsa is currently restricted to the large class of protocols that do
not use addition in the exponents, which we call multiplicative protocols. cpsa is
also restricted to protocols that disclose randomly chosen exponents one-by-one.
This allows modeling a wide range of possible types of corruption; however, it
excludes a few protocols in which products of exponents are disclosed. A protocol
separates disclosures if it satisfies our condition.

These restrictions justify two principles—Lemmas 1 and 2—that are valid for
all executions of protocols that separate disclosures. The lemmas characterize
how the adversary can obtain an exponent value such as xy or an exponentiated
DH value such as gxy, respectively. They tell cpsa what information to add
to enrich a partial analysis to describe the possible executions in which the
adversary obtains these values. Lemmas 1 and 2 are a distinctive contribution
that may also prove useful to other analysis tools, helping to narrow their search.

2

To formulate and prove these lemmas, we had to clarify the algebraic struc-
tures we work with. The messages in our protocol executions contain math-
ematical objects such as elements of fields and cyclic groups. We regard the
the random choices of the compliant protocol participants as “transcendentals,”
i.e. primitive elements added to a base field that have no algebraic relationship
to members of the base field.

cpsa yields results within a language of first order logic. The analysis de-
livers truths about all protocol executions; the executions are the models of the
theories used in the analysis. This provides a familiar foundational setting. A
long version [17] has a through discussion. Guttman [14] developed the under-
lying ideas, and Rowe et al. [25] applied them to “measure” the strength of
protocols using the goal formulas the protocols achieve. That formal machinery
is independent of whether the protocols use DH or not.

cpsa is very efficient. When executed on a rich set of variants of Internet Key
Exchange (IKE) versions 1 and 2, our analysis required less than 30 seconds on
a laptop. Section 7 tabulates results.

To Cathy, with gratitude. As so often, Cathy Meadows explored this area
long before us. Maude-NPA has delivered informative results about Diffie-Hellman
protocols for a long time, and her work jointly with Dusko Pavlovic a dozen years
ago identified core protocol characteristics of Diffie-Hellman in a compact and
informative way. We were certainly aware of an echo of their guard notion in our
Lemmas 1–2. Perhaps the analysis we give in Section 4 should be regarded as
an explanation of why the guard idea is properly applicable here.

2 An example protocol: Unified Model

In many Diffie-Hellman protocols [8], the participants A,B exchange both:

– certified, long-term values ga and gb, and also
– one-time, ephemeral values gx and gy.

The peers compute session keys using key computation functions KCF(·), where in
successful sessions, KCFA(a, x, gb, gy) = KCFB(b, y, ga, gx). The ephemeral values
ensure the two parties agree on a different key in each session. The long-term
values are intended for authentication: Any party that obtains the session key
must be one of the intended peers. Different functions KCF(·) yield different
security properties. Protocol analysis tools for DH key exchanges must be able
to use algebraic properties to identify these security consequences.

We consider here a simple DH Challenge-Response protocol DHCR in which
nonces from each party form a challenge and response protected by a shared,
derived DH key (see Fig. 1).

A and B’s long-term DH exponents are values ltx(A), ltx(B), which we will
mainly write as a lower case a, b resp. We assume the principals are in bijection
with distinct long-term ltx(·) values.

The initiator and responder each receive two self-signed certificates, certify-
ing the long term public values gltx(·) of his peer and himself.

3

• +3 • +3
��

• +3 •
��

init

certs

OO

na,A,B, gx gβ , {|na, nb|}K

OO

nb

certs

��
na,A,B, gα

��
gy, {|na, nb|}K nb

��
• +3 • +3 • +3

OO

• resp

[[gltx(P)]]sk(P)

•
OO

+3 · · · reg

where init computes K as KCFA(a, x, gb, gβ)

resp computes K as KCFB(b, y, ga, gα)

Fig. 1. Protocol DHCR: Initiator, responder, and ltx() self-certifying roles. The certs

are [[gltx(A)]]sk(P) and [[gltx(B)]]sk(P) for each role.

Each will send an ephemeral public DH value gx, gy in cleartext, and also
a nonce. Each will receive a value which may be the peer’s ephemeral, or may
instead be some value selected by an active adversary. Neither participant can
determine the exponent for the ephemeral value he receives, but since the value
is a group element, it must be some value of the form gα or gβ .

Each participant computes a session key using his KCF(·). The responder uses
the key to encrypt the nonce received together with his own nonce. The initiator
uses the key to decrypt this package, and to retransmit the responder’s nonce in
plaintext as a confirmation.

The registration role allows any principal P to emit its long-term public group
value gltx(P) under its own digital signature. In full-scale protocols, a certifying
authority’s signature would be used, but in this paper we omit the CA so as not
to distract from the core DH issues.

We will assume that each instance of a role chooses its values for certain
parameters freshly. For instance, each instance of the registration role makes a
fresh choice of ltx(P). Each instance of the initiator role chooses x and na freshly,
and each responder instance chooses y and nb freshly.

DHCR is parameterized by the key computations. The Unified Model [1] offers
three key computations, with a hash function #(·) standing for key derivation.
The shared keys—when each participant receives the ephemeral value gα = gx

or gβ = gy that the peer sent—are:

Plain UM: KCFA(a, x, gb, gβ) = #((gb)a, (gβ)x)
Criss-cross UMX: #(gay, gbx)
Three-component UM3: #(gay, gbx, gxy)

We discuss three security properties:

4

Authentication: If either the initiator or responder completes the protocol,
and both principals’ private long-term exponents are secret, then the intended
peer must have participated in a matching conversation.

The key computations UM, UMX, and UM3 all enforce the authentication goal.

Impersonation resistance: If either the initiator or responder completes the
protocol, and the intended peer’s private long-term exponent is secret, then
the intended peer must have participated in a matching conversation.

Here we do not assume that ones own private long-term exponent is secret. Can
the adversary impersonate the intended peer if ones own key is compromised?

DHCR with the plain UM KCF is susceptible to an impersonation attack: An
attacker who knows Alice’s own long-term exponent can impersonate any partner
to Alice. The adversary can calculate gab from a and gb, and can calculate the
gxy value from gx and a y it chooses itself.

On the other hand, the UMX and UM3 KCFs resist the impersonation attack.

Forward secrecy: If the intended peers complete a protocol session and then
the private, long-term exponent of each party is exposed subsequently, then
the adversary still cannot derive the session key.
This is sometimes called weak forward secrecy.

To express forward secrecy, we allow the registration role to continue and sub-
sequently disclose the long term secret ltx(P) as in Fig. 2. If we assume in an
analysis that ltx(P) is uncompromised, that implies that this role does not com-
plete. The dummy second node allows specifying that the ltx(P) release node
occurs after some other event, generally the completion of a normal session.

•
��

+3 • +3 •
��

[[gltx(P)]]sk(P) dummy

OO

ltx(P)

Fig. 2. The full registration role

The UM KCF guarantees forward secrecy,
but UMX does not. In UMX, if an adversary
records gx and gy during the protocol and
learns a and b later, it can compute the key
by exponentiating gx to the power b and gy

to the power a. UM3 restores forward secrecy,
meeting all three of these goals.

2.1 Strand terminology

A sequence of transmission and reception events as illustrated in Figs. 1–2 is a
strand. Each send-event or receive-event on it is a node. We draw strands either
horizontally as in Figs. 1–2 or vertically, as in diagrams generated by cpsa itself.
We write msg(n) for the message sent or received by node n.

A protocol consists of a finite set of these strands, which we call the roles
of the protocol. The roles contain variables, called the parameters of the roles,
and by plugging in values for the parameters, we obtain a set of strands called
the instances of the roles. We also call a strand a regular strand when it is an
instance of a role, because it then complies with the rules. Regular nodes are
the nodes that lie on regular strands. We speak of a regular principal associated
with a secret if that secret is used only in accordance with the protocol, i.e. only
in regular strands.

5

In an execution, events are (at least) partially ordered, and values sent on
earlier transmissions are available to the adversary, who would like to provide the
messages expected by the regular participants on later transmission nodes. The
adversary can also generate primitive values on his own. We will make assump-
tions restricting which values the adversary does generate to express various
scenarios and security goals.

3 How CPSA works: UMX initiator

Here we will illustrate the main steps that cpsa takes when analyzing DHCR.

init reg

•
��

•oo

•
��
◦
��
•

Fig. 3. Initial
scenario, skele-
ton 0: ltx(B) non-
compromised
and A 6= B

For this illustration, we will focus on the impersonation re-
sistance of the UMX key computation, in the case where the
initiator role runs, aiming to ensure that the responder has
also taken at least the first three steps of a matching run. The
last step of the responder is a reception, so the initiator can
never infer that it has occurred. We choose this case because
it is typical, yet quite compact.

Starting point. We start cpsa on the problem shown in
Fig. 3, in which A, playing the initiator role, has made a full
local run of the protocol, and received the long term public
value of B from a genuine run of the registration role. These
are shown as the vertical column on the left and the single
transmission node at the top to its right. We will assume that
B’s private value ltx(B) is non-compromised and freshly gen-
erated, so that the public value gltx(B) originates only at this

point. In particular, this run definitely does not progress to expose the secret as
in the third node of Fig. 2. The fresh selection of ltx(B) must certainly precede
the reception of gltx(B) at the beginning of the initiator’s run. This is the meaning
of the dashed arrow between them. We do not assume that A’s long term secret
ltx(A) is uncompromised, although we will assume that the ephemeral x value
is freshly generated by the initiator run, and not available to the adversary. We
assume A 6= B, which is the case of most interest.

Exploration tree. Fig. 4 shows the exploration tree that cpsa generates.

0

1

2 3 4

5

6

7

8

9

Fig. 4. cpsa exploration tree

Each item in the tree—we will call each item
a skeleton—is a scenario describing some behav-
ior of the regular protocol participants, as well
as some assumptions. For instance, skeleton 0
contains the assumptions about ltx(B) and A’s
ephemeral value x mentioned before. The explo-
ration tree contains one blue, bold face entry,
skeleton 1 (shown in Fig. 5), as well as a sub-
tree starting from 2 that is all red. The bold blue
skeleton 1 is a shape, meaning it describes a sim-
plest possible execution that satisfies the starting

6

skeleton 0. The red skeletons are dead skeletons, meaning possibilities that the
search has excluded; no executions can occur that satisfy these skeletons. Thus,
skeleton 1 is the only shape, and cpsa has concluded that all executions that
satisfy skeleton 0 in fact also satisfy skeleton 1.

In other examples, there may be several shapes identified by the analysis, or
in fact zero shapes. The latter means that the initial scenario cannot occur in
any execution. This may be the desired outcome, for instance when the initial
scenario exhibits some disclosure that the protocol designer would like to ensure
is prevented.

First step. cpsa, starting with skeleton 0 in Fig. 3, identifies the third node of
the initiator strand, which is shown in red, as unexplained. This

init ltx-gen resp

•

��

•oo // •

��
•

��

// •

��
•

��

•oo

•

Fig. 5. Skeleton 1, the sole re-
sulting shape.

is the initiator receiving the DH ephemeral pub-
lic value gy and the encryption {|na, nb|}K , where
K is the session key A computes using gy and
the other parameters. The node is red because
the adversary cannot supply this message on his
own, given the materials we already know that
the regular, compliant principals have transmit-
ted. Thus, cpsa is looking for additional infor-
mation, including other transmissions of regular
participants, that could explain it. Two possibili-
ties are relevant here, and they lead to skeletons 1
and 2 (see Fig. 5–6).

In skeleton 1, a regular protocol participant ex-
ecuting the responder role transmits the message
gy, {|na, nb|}K . Given the values in this message—

including those used to compute K using the UMX function—all of the param-
eters in the responder role are determined.

This is an encouraging result: The initiator has interacted with a run of the re-
sponder role. Moreover, the solid arrows indicate that the responder has received

init reg

•

��

•oo

•

��

K// ◦

��
•

��

•oo

•

Fig. 6. Skeleton 2: Can the
UMX encryption key K be
exposed, on the rightmost
strand?

exactly what the initiator has transmitted, and
vice versa. cpsa’s accompanying text output con-
firms that the two strands agree on all of their
parameters. Thus, they agree about their iden-
tities, the names A,B; the long-term exponents
ltx(A), ltx(B); the ephemeral values x, y, and the
nonces na, nb. Thus, the initiator has authenti-
cated the responder with an exactly matching
run [5,20].

Skeleton 2 considers whether the key K =
#(gay, gbx), computed by the initiator, might be
compromised. K is the value received on the right-
most strand. The reception node is called a lis-
tener node, because it witnesses for the availabil-
ity of K to the adversary. The “heard” value K is

7

then retransmitted so that cpsa can register that this event must occur before
the initiator’s third node. This listener node is red because cpsa cannot yet
explain how K would become available. However, if additional information, such
as more actions of the regular participants, would explain it, then the adversary
could use K to encrypt na, nb and forge the value A receives. Thus, skeleton 2
identifies this listener node for further exploration.

Step 2. Proceeding from skeleton 2, cpsa performs a simplification on K =
#(gay, gbx). The value y is available to the adversary, as is a, since we have
not assumed them uncompromised. Thus, gay is available. The adversary will
be able to compute K if he can obtain gbx. Skeleton 3 (not shown) is similar to
skeleton 2 but has a red node asking cpsa to explain how to obtain gbx.

init reg

•

��

•oo

•

��

gbx/w,w// ◦

��
•

��

•oo

•

��

•oo

•

��

•oo

•

Fig. 7. Skeleton 4: Is w = bx?
Or is there an exposed expo-
nent w where gbx/w was sent
by a regular participant?

This requires a step which is distinctive to DH
protocols. cpsa adds Skeleton 4 (Fig. 7), which
has a new rightmost strand with a red node, re-
ceiving the pair gbx/w, w. To resolve this, cpsa
must meet two constraints. First, it must choose
an exponent w that can be exposed and available
to the adversary. Second, for this value of w, ei-
ther w = bx or else the “leftover” DH value gbx/w

must be transmitted by a regular participant and
extracted by the adversary.

One of our key lemmas, Lemma 2, justifies this
step.

Step 3, clean-up. From skeleton 4, cpsa consid-
ers the remaining possibilities in this branch of its
analysis. First, it immediately eliminates the pos-
sibility w = bx, since the protocol offers no way
for the adversary to obtain b and x.

In fact, because b and x are random values,
independently chosen by different principals, the
adversary cannot obtain their product without ob-
taining the values themselves.

cpsa then considers each protocol role in turn, namely the initiator, respon-
der, and registration roles. Can any role transmit a DH value of the form gbx/w,
where the resulting inferred value for w would be available to the adversary?

In skeleton 5, it considers the case in which the initiator strand is the original
starting strand, which transmits gx. Thus, x = bx/w, which is to say w = b.
However, since b is assumed uncompromised, the adversary cannot obtain it,
and this branch is dead. Skeleton 6 explores the case where a different initiator
strand sends gz, so z = bx/w, i.e. w = bx/z. However, this is unobtainable, since
it too is compounded from independent, uncompromised values b, x, z.

Skeleton 7 considers the responder case, and skeletons 8 and 9 consider a
registration strand which is either identical with the initial one (skeleton 8) or
not (skeleton 9). They are eliminated for corresponding reasons.

8

init(z1, 4) ∧ init na(z1, na) ∧ init nb(z1, nb) ∧ init a(z1, a) ∧ init b(z1, b)
∧ init ltxa(z1, ltxa) ∧ init ltxb(z1, ltxb) ∧ init x(z1, x) ∧ init y(z1, y)
∧ reg(z2, 1) ∧ reg self(z2, b) ∧ reg l(z2, ltxb)
∧ (z2, 1) ≺ (z1, 1) ∧ non(ltxb)

=⇒
∃z3.

resp(z3, 3) ∧ resp na(z3, na) ∧ resp nb(z3, nb) ∧ resp a(z3, a) ∧ resp b(z3, b)
∧ resp ltxa(z3, ltxa) ∧ resp ltxb(z3, ltxb) ∧ resp x(z3, x) ∧ resp y(z3, y)
∧ (z2, 1) ≺ (z3, 1) ∧ (z1, 2) ≺ (z2, 2) ∧ (z2, 3) ≺ (z2, 3)
∧ uniq at(na, (z1, 2)) ∧ uniq at(nb, (z2, 3))

Fig. 8. Shape analysis sentence: UMX initiator impersonation

Thus, the whole subtree below skeleton 2 (Fig. 6) is dead, i.e. there is no
possible execution to which skeleton 2 leads.

The entire analysis takes about 0.2 seconds.

Result of the analysis. Having eliminated everything below skeleton 2 (Fig. 6),
the analysis has left only skeleton 1 (Fig. 5) as a shape. In that skeleton, the
initiator has authenticated the responder with an exactly matching run. Thus,
the analysis shows that an implication holds: For every execution, if it contains
at least the structure shown in skeleton 0, then it has all of the structure shown
in skeleton 1.

cpsa generates a shape analysis sentence that expresses this. Its antecedent
describes the facts present in skeleton 0, and the conclusion describes the facts
in skeleton 1. If there were multiple alternative shapes rather than just one, the
conclusion would be a disjunction of the descriptions of the different possible
outcomes. In the important special case in which the whole search tree is dead, so
that the initial scenario—which may describe some undesired disclosure of values
that should remain confidential—cannot occur, the conclusion is the disjunction
of the empty set of formulas, i.e. the formula false.

Specifically, in our example analysis, the hypothesis is that there is an initia-
tor strand and an registration strand, in which the registration strand generates
ltx(B) and moreover ltx(B) is non-compromised. The conclusion is that there is
also a responder strand with exactly matching parameters.

The formula generated by cpsa is shown, in a more humanly readable form,
and without its leading universal quantifiers, in Fig. 8.

The variables z1, z2 range over strands; na, nb range over data; a, b range
over names; and ltxa, ltxb, x range over randomly chosen exponents. These are
transcendentals of the exponent field. By contrast, y may be a field member that
is not a simple random value, but e.g. a product of field values.

The strand z1 is an instance of the init role, and it is of “full height,” meaning
that all four steps have occurred. The next eight atomic formulas fix each of
the parameters of strand z1, using the predicates init na, init nb, etc., to make

9

assertions about the parameters in question, and the variables na, nb, etc. to
refer to their values.

The second strand z2 is an instance of the reg role, with one node, the
transmission node. It stipulates that the self parameter refers to the same in-
tended peer b, with the same long term exponent ltxb. It states a precedence
relation between the first node on the two strands, and assumes that ltxb is non-
compromised, i.e. never transmitted as part of a payload, or by the adversary.

The conclusion asserts the existence of a strand z3 which is an instance
of the resp role, and has the matching parameter values. It also records the
precedence ordering, as determined by cpsa, and some freshness properties
uniq at(na, (z1, 2)) ∧ uniq at(nb, (z2, 3)) for the nonces, which follow from the
definitions of the roles.

4 Modeling DH values and executions

The analysis of Section 3 depends on some modeling decisions. For one, encryp-
tion and digital signature are assumed to satisfy the Dolev-Yao properties [10]:

digital signatures can be produced only using the signing key;
encryptions can be produced only from the plaintext using the encryption key;
plaintext can be recovered from an encryption only using the decryption key;
keys cannot be recovered from signatures or encryptions.

Step 1 assumes that, for the adversary to produce the encryption {|na, nb|}K , he
can obtain the key K. A regular responder may produce the encryption, as in
skeleton 1, in a session with the right parameters, since K = KCFB(b, β, ga, gx).

There are also important modeling properties of the DH values. First, the
adversary can certainly carry out the four basic algebraic operations on expo-
nents α and β to obtain α+ β, α · β, etc. Given a DH value gα and an exponent
β, the adversary can exponentiate, obtaining (gα)β = gαβ . Given two DH values
gα and gβ , they may be combined to yield gαgβ = gα+β .

Thus, the exponents form a field, i.e. a structure with commutative addition
and multiplication operations and identity elements 0,1, related by a distributive
law. Addition has an inverse, as does multiplication, for non-0 divisors.

The DH values form a cyclic group, generated from a generator g by repeated
multiplication. Since, e.g., ggg = g3, we can regard the cyclic group as built from
g by using field elements as exponents. Although we have been writing the group
operation multiplicatively, and combining a group element and a field element
by exponentiation, the algebra is isomorphic if the group operation is written
additively as +. Then the field elements are combined with group elements by
a scalar multiplication αP . We will continue to write the group operation with
the same multiplicative convention.

Each field F determines a cyclic group, with domain {gα : α ∈ F}. Its group
operation maps gα and gβ to gα+β . Its inverse maps gα to g−α since gαg−α = g0.

But: what fields F are relevant? In particular, we must decide how to repre-
sent random choices of the regular principals (or the adversary) as field elements.
The criterion for this depends on our view of the adversary.

10

Adversary model. A protocol designer designs a protocol with some scenarios
of interest in mind, with authentication and confidentiality goals for each. The
adversary’s goal is to exhibit protocol executions that provide counterexamples
to these goals of the designer. A counterexample is an execution, so the adversary
must be able to supply every message received during the execution.

Executions involve cyclic group and field values, structures that are not freely
generated, and our adversary works directly with polynomials, within the math-
ematical structures. Thus, our adversary performs group and field operations,
which have the same effect regardless of how the structures are implemented as
bitstrings. The adversary does not perform arbitrary efficient computations on
bitstrings, unlike in the standard computational model.

This is similar to the generic group model [26,21]. This is an asymptotic com-
putational model, in which the adversary is assumed to get negligible advantage
from the bitstrings but can use group operations. Barthe et al. [3] show that an
adversary which solves equations in a non-asymptotic model soundly approxi-
mates the generic group model. If the adversary’s recipe for generating values
for a recipient is a polynomial p0, and the recipient expects the values produced
by p1, the adversary succeeds when the arguments satisfy p0 − p1 = 0. If the
underlying fields are the prime order fields Fq, then as q increases (or, better,
as log q increases), the adversary wins with non-negligible probability only if p0
and p1 are identically equal (cf. also [19]). Otherwise, p0−p1 has at most d zeros,
where d is the (constant) maximum of their degrees.

Thus, the adversary uses polynomials as recipes, and wins when the polyno-
mials evaluate to a result acceptable to the regular principals.

Fields and extension elements. The “variables” in these polynomials are
extension elements that represent the random choices of the regular participants
and the adversary. A set X of extension elements means a set of new values
adjoined to a base field F . They generate a new field F(X) in which the elements
are polynomials in X, as well as quotients of polynomials. Extension elements
come in two flavors. Some, called algebraic extension elements, like the square
root of two, are introduced to supply a root for a polynomial, in this case x2−2.
Others, introduced without an associated polynomial, are called transcendental
extension elements, because transcendentals such as π and e arise in this way.
The random choices are effectively transcendental extension elements, because
from the adversary’s point of view, they are:

– disjoint from the underlying field: the adversary loses with overwhelming
probability if he assumes a random choice equals a particular member.

– algebraically independent of each other: the adversary loses with overwhelm-
ing probability if he assumes the random choices will furnish a 0 for a poly-
nomial p, other than the vacuous polynomial with all zero coefficients.

Fix an infinite set trsc as the transcendentals. We will work over a single base
field Q of the rationals. Q is the right base field. If a set of polynomials has a
solution in the finite field Fq for infinitely many choices of a prime q, then it also
has solutions in Q. Conversely, any solution in Q yields a solution in every Fq.

11

Creation: g ↑ 1 ↑ a ↑ for a : create

Multiplicative: ↓w1 ⇒ ↓w2 ⇒ w1 · w2 ↑ ↓w1 ⇒ ↓w2 ⇒ w1/w2 ↑
↓h⇒ ↓w ⇒ exp(h,w) ↑

Additive: ↓w1 ⇒ ↓w2 ⇒ (w1 + w2) ↑ ↓w1 ⇒ ↓w2 ⇒ (w1 − w2) ↑
↓ exp(h,w1)⇒ ↓ exp(h,w2)⇒ exp(h,w1 + w2) ↑

Construction: ↓m⇒ ↓K ⇒ {|m|}K ↑ ↓m1 ⇒ ↓m2 ⇒ (m1,m2) ↑
Destruction: ↓ (m1,m2)⇒ m1 ↑ ↓ (m1,m2)⇒ m2 ↑

↓ {|m|}K ⇒ ↓K−1 ⇒ m ↑

↓m and m ↑ mean reception and transmission of m, resp.
+,− mean field addition and subtraction

Fig. 9. Adversary strands

Analysis in Q(trsc) is thus faithful for adversary strategies that work in
Fq(trsc) for infinitely many q. Thus, for the remainder of this paper, we fix
F = Q(trsc) as the extension field. Fix the cyclic group C to be the cyclic group
generated from g using as exponents the members of F .

Viewing random choices as members of trsc justifies our reasoning in Sec-
tion 3, Step 3, where we argued that the adversary could not obtain products
of independent random choices of the regular principals. The distinct random
choices cannot cancel out to leave a value the adversary can obtain.

Adversary strands. The adversary constructs new values from available values
via the strands in Fig. 9. In the creation strands, the sort create is the union
of sorts for atomic symmetric keys; asymmetric keys; texts; principal names;
and transcendentals trsc. Group elements are not created; instead, one obtains
a field element and exponentiates. The multiplicative and additive operations
apply the field and group operations. The remaining strands are standard Dolev-
Yao operations. The adversary concatenates or separates tuples; and applies
encryption, decryption, or digital signature given the necessary keys, plaintext, or
cipher text. Messages can be non-atomic symmetric keys. The adversary “routes”
messages from one adversary strand to another for compound operations.

Corruption. We do not model corruption as an adversary action. Instead, we
treat corruption as an action of a regular participant, who may disclose any
parameter. The registration role shown in Fig. 2, which transmits the long term
value ltx(P) in its last step, is an example. We can select which executions
to query by stipulating that particular values are non-compromised: Then, the
strand that chooses that value does not progress to the disclosure in the relevant
executions. Any value not governed by an assumption may be compromised.

Although DHCR allows compromise of long term exponents, but not ephemer-
als, that is specific to the example. Protocols can be instrumented to allow com-
promise of any parameter. cpsa queries can exclude specific compromises [25].

Messages. Messages include the field F and its generated group C, with addi-
tional sorts of atomic symmetric keys, asymmetric keys, texts, and names. We

12

close the messages under free operations of tupling and cryptographic operations,
e.g. symmetric and asymmetric encryption, digital signature, and hashing.

We do not distinguish notationally among symmetric encryption, asymmetric
encryption, and digital signature. We say that K = K−1 whenever K is an
atomic symmetric key or a compound key, and K 6= K−1 iff K is an asymmetric
key. Then the adversary powers summarized in Fig. 9 are reasonable. We regard
a hash #(m) as a symmetric encryption {|0|}m, using the argument as key to
encrypt a fixed, irrelevant value. We use the word encryption as shorthand for
all of these cryptographic operations.

Our claims hold across a wide range of choices of operators for the tupling
and cryptographic operators, as long as they freely generate their results.

Definition 1. We say that m0 is visible in iff m0 = m1, or recursively m1 is a
tuple (m2,m3) and m0 is visible in either m2 or m3.

We say that m0 is carried in m1 iff m0 = m1, or recursively m1 is either:

a tuple m1 = (m2,m3) and m0 is carried in either m2 or m3; or
an encryption m1 = {|m2|}K and m0 is carried in m2.

In defining visible, we do not look inside encryptions at all. In carried, we look
inside the plaintext m2, but not the key K.

Executions are bundles. In our model, the executions of a protocol Π are
bundles. A bundle is a set of strands that are either adversary strands or else
instances of the roles of Π, or initial segments of them (see Sec. 2.1), and in which
every reception is explained by an earlier matching transmission. We formalize
bundles via nodes, i.e. the transmission and reception events along the strands.

A binary relation→ on nodes is a communication relation iff n1 → n2 implies
that n1 is a transmission node, n2 is a reception node, and msg(n1) = msg(n2).

Definition 2. Let B = (N ,→) be a set of nodes together with a communication
relation on N . B is a bundle iff:

1. n2 ∈ N and n1 ⇒ n2 implies n1 ∈ N ;
2. n2 ∈ N and n2 is a reception node implies there exists a unique n1 ∈ N such

that n1 → n2; and
3. Letting ⇒B be the restriction of ⇒ to N ×N , the reflexive-transitive closure

(⇒B ∪ →)∗ is a well-founded partial order.

We write nodes(B) for N , and �B for (⇒B ∪ →)∗.

Clause 3 is an induction principle for bundles. Any non-empty set S of nodes
will have nodes that are �B-minimal among nodes in S; proofs often take cases
on �B-minimal nodes.

Definition 3. Let B be a bundle, m a message, and n ∈ nodes(B). Then m
originates at n iff m is carried in msg(n), n is a transmission node, and for all
earlier n0 ⇒+ n on the same strand, m is not carried in msg(n0).

The message m originates uniquely in B iff there is exactly one n ∈ nodes(B)
such that m originates at n. The message m is non-originating in B if there is
no such n ∈ nodes(B).

13

We can now define two special classes of protocol that cpsa analyzes.
One is that when an instance of a role transmits a field element in carried

position, then that field element should simply be a transcendental x ∈ trsc.
This covers two important reasons why protocols disclose field values. First,
disclosing a random choice models a corruption step, as in the registration role,
Fig. 2. Second, disclosing a random choice may be part of a decommit step that
allows a third party to validate a previously committed value. In these cases, an
independent random choice, i.e. some x ∈ trsc, is the value to disclose. There are,
by contrast, also protocols such as signature protocols in which polynomials such
as r−xe may be disclosed. We do not model these as protocols, but can certainly
model systems that use these types of signature as a primitive cryptographic
operation. We say that a protocol separates disclosures if it satisfies this property.

Second, many protocols—though again, not all—involve field multiplication
and division, but not field addition or subtraction. The four operations to-
gether lead in general to an undecidable class of unification problems. Thus,
we adopt a limitation that is common to many mechanized protocol analysis
systems [12,22,7,15], and focus on the protocols in which the regular partici-
pants do not add or subtract field values, or use the group operation (which is
addition in exponents).

Recall that a protocol contains a set of roles, which are strands containing
parameters (i.e. variables) and terms built from them. Some of these variables are
of sort transcendental, and variables and compound terms may be of sort field.
The sort transcendental is a subsort of field, and in our current implementation,
all terms of the narrower sort transcendental are variables. Bundles, however,
contain actual field members, i.e. polynomials in our extension field F = Q(trsc).

Definition 4. Let Π be a protocol. Π separates disclosures iff, for all transmis-
sion nodes n ∈ nodes(Π), and all v of sort field carried in msg(n), v is simply
a parameter of sort transcendental.

Π is multiplicative iff, for all transmission nodes n ∈ nodes(Π), and all v of
sort field occurring in msg(n), neither addition nor subtraction occurs in v.

A bundle B is purely monomial iff, for every node n ∈ nodes(B) and every
p ∈ F , if p occurs in msg(n), then p is a monomial.

The methods of our earlier paper [16] show that, when Π is a multiplicative
protocol, and a security goal G for Π has a counterexample, then there is a
purely monomial bundle B that is a counterexample for G.

cpsa focuses on protocols that are multiplicative and separate disclosures.
Thus, we need consider only purely monomial bundles. For more detail on this
section, see the long version [17].

5 Two key lemmas

We now state our two main results about how the adversary obtains field and
group elements. The first holds even for protocols using the additive structure.

14

When a field element is exposed to the adversary in a bundle, then every tran-
scendental present in it has also been exposed:

Lemma 1. Suppose Π separates disclosures, B is a Π-bundle, and x ∈ trsc has
non-0 degree in p ∈ F . Let np ∈ nodes(B) be a node where p is visible in msg(np).
There is a node nx ∈ nodes(B) such that nx �B np, and x is visible in msg(nx).

The proof in the appendix illustrates a standard technique, namely proof using
the induction principle on bundles (Def. 2, Clause 3), after which we take cases
on the minimal node in a set S.

The second lemma says how an adversary obtains a group element gµ, in
purely monomial bundles. It says that µ is a product of two monomials. The
first, ν, consists of compromised transcendentals. The rest, ξ, yields a group
element gξ that some regular participant has sent in carried position.

Lemma 2. Suppose Π separates disclosures; B is a purely monomial Π-bundle;
nµ ∈ nodes(B); and gµ ∈ C is carried in msg(nµ). Then there is a monomial
ν ∈ F s.t. ν is a product of transcendentals visible before nµ, and either

1. ν = µ or else
2. letting ξ = µ/ν, there is a regular transmission node nξ ∈ nodes(B) such

that nξ �B nµ and gξ is carried in msg(nξ).
Moreover, either ν = 1 or gξ was previously visible.

The proof is similar in form; in the main case, gµ is constructed by an adversary
exponentiation, and the new exponent factor is combined into ν.

6 The CPSA algorithm

Overall algorithm. cpsa manipulates descriptions of executions that we call skele-
tons. The initial scenario is a skeleton from which cpsa starts. At any step, cpsa
has a set S of skeletons available. If S is empty, the run is complete.

Otherwise, cpsa selects a skeleton A from S. If A is realized, meaning that
it gives a full description of some execution, then cpsa records it as a result.
Otherwise, there is some reception node n within A that is not explained. This n
is the target node. That means that cpsa cannot show how the message received
by n could be available, given the actions the adversary can perform on his own,
or using messages received from earlier transmissions.

cpsa replaces A with a “cohort.” This is a set C1, . . . ,Ck of extensions of A.
cpsa must not “lose” executions: For every execution satisfying A, there should
be at least one of the Ci which this execution satisfies. When k = 0 and there
are no cohort members, cpsa has recognized that A is dead, i.e. it describes no
executions. cpsa then repeats this process starting with S \{A}∪{C1, . . . ,Ck}.

Cohort selection. cpsa generates its cohorts by adding one or more facts, or
new equalities, to A, to generate each Ci.

The facts to add is based on a taxonomy of the executions satisfying A.
In each one of them, the reception on the target node n must somehow be

15

Regular transmission: A regular principal has transmitted a message in this exe-
cution which is not described in A. E.g. Skeleton 1 in step 1 of Section 3.

Encryption key available: An encrypted value is received. cpsa explores if the ad-
versary can obtain the encryption key. E.g. Skeleton 2 in step 1.

Decryption key available: A value escaped from a previously transmitted encryp-
tion. cpsa explores if the adversary can obtain the decryption key.

Specialization: The execution satisfies additional equations, not included in A. cpsa
explores if in this special case the adversary can obtain the target node message.

DH value computed: The adversary obtains a DH value gα, by exponentiation gα/w

to power w, which must also be available. (Lemma 2.) Skeleton 4 in step 2.
Exponent value computed: The adversary obtains an exponent xw. There are then

two subcases (Lemma 1.):
1. cpsa explores how x and w are obtained; or
2. w is instantiated as some v/x, and x cancels out. Thus, x is absent from the

instance of xw.

Fig. 10. Kinds of cohort members.

explained. There are only a limited number of types of explanation, which are
summarized in Fig. 10. The first three kinds are identical to the forms they take
without Diffie-Hellman; they are essentially about encryption and freshness. The
Specialization clause is implemented by a unification algorithm implemented as
a combination of theories. It treats transcendentals as primitive values, leading
to faster solutions. The last two clauses, justified by Lemmas 2 and 1 (resp.), are
new. The last clause, which is infrequently used, is applied in forward secrecy
results in which the exponents take center stage.

7 Results and related work

The cpsa implementation is highly efficient (Figure 11), running on a mid-2015
MacBook Pro with a 4-core 2.2 GHz Intel Core i7 processor, running up to 8
parallel threads using the Haskell run-time system.

We analyzed DHCR with each key derivation option, confirming the claims
of Section 2. Each cpsa run checked five scenarios, determining the initiator
and responder’s guarantees under two sets of assumptions, as well as a forward
secrecy property. Each run examines 90 to 230 skeletons.

We ran cpsa on the Station-to-Station protocol [9], together with two weak-
enings of it. In one, we do not assume the peer necessarily chooses a fresh expo-
nent. In the other, we omit the flip in the second signed unit, enabling a reflection
attack. In each, we test authentication, key secrecy, and forward secrecy, finding
attacks against the weakened versions, and examining 55–190 skeletons.

We also ran a rich set of variants of Internet Key Exchange (IKE) versions 1
and 2. Scyther analyzed this same set of variants circa 2010 [7], requiring more
substantial runtimes, although recent timings are similar to ours (cf. also [4]).
This suggests that cpsa is broadly efficient, with or without DH. Performance

16

DHCR, STS: Example & Time

dhcr-um 4.06s dhcr-umx 0.72s dhcr-um3 0.47s
sts 0.36s sts-weak 0.08s sts-unflip 0.17s

IKEv1: Example & Time

IKEv1-pk2-a 1.06s IKEv1-pk2-a2 1.02s
IKEv1-pk2-m 0.49s IKEv1-pk2-m2 0.58s
IKEv1-pk-a1 1.27s IKEv1-pk-a12 1.09s
IKEv1-pk-a2 1.00s IKEv1-pk-a22 1.10s
IKEv1-pk-m 0.51s IKEv1-pk-m2 0.49s
IKEv1-psk-a 0.43s IKEv1-psk-m 0.68s
IKEv1-psk-m-perlman 0.69s IKEv1-quick 0.66s
IKEv1-psk-quick-noid 0.65s IKEv1-quick-nopfs 0.09s
IKEv1-sig-a1 0.15s IKEv1-sig-a2 0.16s
IKEv1-sig-a-perlman 0.17s IKEv1-sig-a-perlman2 0.19s
IKEv1-sig-m 0.21s IKEv1-sig-m-perlman 0.19s

IKEv2: Example & Time

IKEv2-eap 1.35s IKEv2-eap2 1.36s
IKEv2-mac 0.76s IKEv2-mac2 0.97s
IKEv2-mac-to-sig 0.83s IKEv2-mac-to-sig2 0.82s
IKEv2-sig 0.56s IKEv2-sig2 0.54s
IKEv2-sig-to-mac 0.70s IKEv2-sig-to-mac2 0.69s

Fig. 11. cpsa runtime: DHCR-UM*, Station-to-Station, Intern. Key Exch. v. 1 and 2.

data for Tamarin and Maude-NPA is less available. We analyzed each IKE vari-
ant for about five properties, yielding conclusions similar to those drawn using
Scyther. We found no novel attacks, but did sharpen the previous analysis, be-
cause cpsa reflects the algebraic properties of Diffie-Hellman natively, while
Scyther emulated some properties of Diffie-Hellman.

Related work. Our primary novelty is enrich-by-need for DH. cpsa provides
a visualization of all of the minimal, essentially different executions compatible
with a starting scenario. cpsa also computes a strongest security goal for the
scenario. Moreover, cpsa is founded in the fields and cyclic groups that DH
manipulates, with a clear connection with the generic group model [26,21,3].

It is, however, hardly the first method for DH. Within avispa [2,29], CL-
Atse treated DH within a bounded session model [28]. In the unbounded session
model, Küsters and Truderung [15] allow using ProVerif for DH; essentially,
they compute a priori a set of DH terms that will suffice for ProVerif, and equip
those terms with the rewrites ProVerif needs. The method is efficient and clever.
However, it lacks a direct connection with the underlying algebra, and is not
intended to support enrich-by-need. Like ProVerif, Scyther was not designed for
DH’s algebra; special-purpose roles were added to coerce messages to different
forms, thereby simulating the commutative principle gxy = gyx [6].

By contrast, multiplicative DH protocols are native to Maude-NPA [12] and
Tamarin [22]. Indeed, both of these systems allow general rewrite systems, even

17

with associative-commutative operators, which is not a cpsa goal. However,
neither supports enrich-by-need. cpsa appears to provide a higher level of au-
tomation and efficiency than Maude-NPA. cpsa’s treatment of the algebra of
DH is also preferable, as Maude-NPA lacks a multiplicative inverse. Tamarin has
a faithful theory for the multiplicative fragment, which—since it lacks 0—has
an equational axiomatization. Although it offers great flexibility, performance
information on Tamarin is hard to find.

Neither Maude-NPA nor Tamarin appears to have a sharp distinction be-
tween the primitive random choices—our “transcendentals”—and other expo-
nents. Their variables are not similar to transcendentals, since they range over
all exponents. Thus, random choices may appear or disappear in unification,
so the distinction between the narrower sort of transcendentals and the larger
sort of exponents sharpens our treatment of unification [17]. It also helped us to
formulate the Lemmas 1–2.

The distinction between underlying transcendentals and exponents in gen-
eral, and the two lemmas to which it leads, are reusable ideas that could well
provide other systems with a strategy for more focused search.

References

1. R. Ankney, D. Johnson, and M. Matyas. The Unified Model. contribution to ANSI
X9F1. Standards Projects (Financial Crypto Tools), ANSI X, 42, 1995.

2. A. Armando, D. A. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar,
P. Hankes Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim,
D. von Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vi-
gneron. The AVISPA tool for the automated validation of internet security proto-
cols and applications. In Kousha Etessami and Sriram K. Rajamani, editors, CAV,
volume 3576 of Lecture Notes in Computer Science, pages 281–285. Springer, 2005.

3. Gilles Barthe, Edvard Fagerholm, Dario Fiore, John C. Mitchell, Andre Scedrov,
and Benedikt Schmidt. Automated analysis of cryptographic assumptions in
generic group models. In CRYPTO, volume 8616 of LNCS, pages 95–112. Springer,
2014.

4. David A. Basin, Cas Cremers, and Simon Meier. Provably repairing the ISO/IEC
9798 standard for entity authentication. Journal of Computer Security, 21(6):817–
846, 2013.

5. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In
Advances in Cryptology – Crypto ’93 Proceedings, number 773 in LNCS. Springer-
Verlag, 1993.

6. Cas Cremers. Key exchange in IPsec revisited: Formal analysis of IKEv1 and
IKEv2. In Computer Security–ESORICS 2011. Springer, 2011.

7. Cas Cremers and Sjouke Mauw. Operational semantics and verification of security
protocols. Springer, 2012.

8. W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, November 1976.

9. Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener. Authentication
and authenticated key exchanges. Designs, Codes and Cryptography, 2(2):107–125,
1992.

18

10. Daniel Dolev and Andrew Yao. On the security of public-key protocols. IEEE
Transactions on Information Theory, 29:198–208, 1983.

11. Daniel J. Dougherty and Joshua D. Guttman. Decidability for lightweight Diffie-
Hellman protocols. In IEEE Symposium on Computer Security Foundations, 2014.

12. Santiago Escobar, Catherine Meadows, and José Meseguer. Maude-NPA: Crypto-
graphic protocol analysis modulo equational properties. In Foundations of Security
Analysis and Design V, FOSAD 2007–2009 Tutorial Lectures, volume 5705 of Lec-
ture Notes in Computer Science, pages 1–50. Springer, 2009.

13. Joshua D. Guttman. Shapes: Surveying crypto protocol runs. In Veronique Cortier
and Steve Kremer, editors, Formal Models and Techniques for Analyzing Security
Protocols, Cryptology and Information Security Series. IOS Press, 2011.

14. Joshua D. Guttman. Establishing and preserving protocol security goals. Journal
of Computer Security, 22(2):201–267, 2014.

15. Ralf Küsters and Tomasz Truderung. Using ProVerif to analyze protocols with
Diffie-Hellman exponentiation. In IEEE Computer Security Foundations Sympo-
sium, pages 157–171. IEEE, 2009.

16. Moses Liskov and F. Javier Thayer. Modeling Diffie-Hellman derivability for au-
tomated analysis. In IEEE Computer Security Foundations, pages 232–243, 2014.

17. Moses D. Liskov, Joshua D. Guttman, John D. Ramsdell, Paul D. Rowe, and
F. Javier Thayer. Enrich-by-need protocol analysis for Diffie-Hellman (extended
version). http://arxiv.org/abs/1804.05713, April 2018.

18. Moses D. Liskov, Paul D. Rowe, and F. Javier Thayer. Completeness of CPSA.
Technical Report MTR110479, The MITRE Corporation, March 2011. http://

www.mitre.org/publications/technical-papers/completeness-of-cpsa.
19. Moses D. Liskov and F. Javier Thayer. Formal modeling of Diffie-Hellman deriv-

ability for exploratory automated analysis. Technical report, MITRE, June 2013.
TR 13-0411.

20. Gavin Lowe. A hierarchy of authentication specifications. In 10th Computer Se-
curity Foundations Workshop Proceedings, pages 31–43. IEEE CS Press, 1997.

21. Ueli M. Maurer. Abstract models of computation in cryptography. In Cryptography
and Coding, volume 3796 of LNCS, pages 1–12. Springer, 2005.

22. Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. The tamarin
prover for the symbolic analysis of security protocols. In Computer Aided Verifi-
cation (CAV), pages 696–701, 2013.

23. John D. Ramsdell. Deducing security goals from shape analysis sentences. The
MITRE Corporation, April 2012. http://arxiv.org/abs/1204.0480.

24. John D. Ramsdell and Joshua D. Guttman. CPSA: A cryptographic protocol
shapes analyzer, 2009. http://hackage.haskell.org/package/cpsa.

25. Paul D. Rowe, Joshua D. Guttman, and Moses D. Liskov. Measuring pro-
tocol strength with security goals. International Journal of Information Se-
curity, 15(6):575–596, November 2016. DOI 10.1007/s10207-016-0319-z, http:

//web.cs.wpi.edu/~guttman/pubs/ijis_measuring-security.pdf.
26. Victor Shoup. Lower bounds for discrete logarithms and related problems. In

EUROCRYPT, volume 1233 of Lecture Notes in Computer Science, pages 256–
266. Springer, 1997.

27. F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces:
Proving security protocols correct. Journal of Computer Security, 7(2/3):191–230,
1999.

28. Mathieu Turuani. The CL-Atse protocol analyser. In Rewriting Techniques and
Applications, pages 277–286. Springer, 2006.

19

http://arxiv.org/abs/1804.05713
http://www.mitre.org/publications/technical-papers/completeness-of-cpsa
http://www.mitre.org/publications/technical-papers/completeness-of-cpsa
http://arxiv.org/abs/1204.0480
http://hackage.haskell.org/package/cpsa
http://web.cs.wpi.edu/~guttman/pubs/ijis_measuring-security.pdf
http://web.cs.wpi.edu/~guttman/pubs/ijis_measuring-security.pdf

29. Luca Viganò. Automated security protocol analysis with the AVISPA tool. Elec-
tronic Notes in Theoretical Computer Science, 155:61–86, 2006.

A Appendix: Proofs

Lemma 1. Suppose Π separates disclosures, B is a Π-bundle, and x ∈ trsc
has non-0 degree in p ∈ F . Let np ∈ nodes(B) be a node where p is visible in
msg(np). There is a node nx ∈ nodes(B) such that nx �B np, and x is visible in
msg(nx).

Proof. Choose B, and if there are any x, p, np that furnish a counterexample let
np ∈ nodes(B) be �B-minimal among counterexamples for any x, p. Observe first
that x 6= p, since if x = p this is not a counterexample: let nx = np.

Since p is carried in msg(np), there exists an no �B np such that p originates
on no. By the definition of originates, no is a transmission node.

First, we show that no does not lie on an adversary strand, by taking cases on
the adversary strands. The creation strands that emit values in fld originate
1 and transcendentals y : trsc. But x is not present in 1, and if x is present in y,
then x and y are identical, which we have excluded.

If no lies on a multiplicative or additive strand, then it takes incoming field
values p1, p2. Since x has non-zero degree in p only if it has non-zero degree in
at least one of the pi, this contradicts the �B-minimality of the counterexample.

Node no does not lie on an construction or destruction strand, which
never originate field values. Thus, no does not lie on an adversary strand.

Finally, no does not lie on a regular strand of Π: Since Π separates disclo-
sures, if no originates the field value p, then p is a transcendental. Thus, if x is
present, p = x, which was excluded above. ut

Lemma 2. Suppose Π separates disclosures; B is a purely monomial Π-bundle;
nµ ∈ nodes(B); and gµ ∈ C is carried in msg(nµ). Then there is a monomial
ν ∈ F s.t. ν is a product of transcendentals visible before nµ, and either

1. ν = µ or else
2. letting ξ = µ/ν, there is a regular transmission node nξ ∈ nodes(B) such

that nξ �B nµ and gξ is carried in msg(nξ).
Moreover, either ν = 1 or gξ was previously visible.

Proof. Let B be a bundle, let nµ ∈ nodes(B), and assume inductively that the
claim holds for all nodes n ≺ nµ. If nµ is a reception node, then the (earlier)
paired transmission node satisfies the property by the IH. However, the same ν
and nξ also satisfy the property for nµ. If nµ is a regular transmission, then the
conclusion holds with ν = 1, the empty product of transcendentals.

So suppose nµ lies on an adversary strand. If nµ transmits the group element
g, then let ν = µ = 1. The constructive strands for tupling or encryption provide
no new group elements in carried position. Nor do the destructive strands for
untupling or decryption.

Thus, the remaining possibility is that nµ is the transmission on an expo-
nentiation strand −h ⇒ −w ⇒ +exp(h,w) where exp(h,w) = gµ. By the IH,

20

for the node receiving h ∈ C, the property is met. Thus, h = gµ0 , where there
exist ν0, ξ0 satisfying the conditions.

Hence, we may take ν = ν0w and ξ = ξ0. By Lemma 1, w is a product of
previously visible transcendentals, so the requirements are met. ut

21

	Enrich-by-need Protocol Analysis for Diffie-Hellman

