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Abstract. This paper, dedicated to Andre Scedrov, was inspired by con-
versations with him about the physical properties of distributed systems.
We use cpsa, the strand space protocol analysis tool, to analyze and clas-
sify distance-bounding protocols. We introduce a model of strand spaces
that explicitly accounts for physical properties like distance. We prove
that non-metric, causal facts allow us to infer distance bounds. More-
over, cpsa already provides these causal conclusions about protocols.
We apply this method to numerous protocols from the literature. By
taking an assumption-based perspective—rather than an attack-based
perspective—we introduce a taxonomy of distance-bounding protocols
that compares the relative strength of different designs.

1 Introduction

A distance-bounding protocol is an exchange of messages between parties that
include a prover and a verifier [6,16]. The verifier wants to determine whether
the prover is nearby, i.e. within some application-relevant radius. This requires
authenticating the prover to some extent, since generally one wants to know
which party is within the radius. For instance, if a credit card is the device
acting as prover, the verifier definitely needs to know what number is associated
with it so that the right number will be billed.

Distance-bounding protocols have often been weak, sometimes quixotically
weak. In this paper, we will approach distance-bounding protocols in three steps.

First, although the goals of a distance-bounding protocol are essentially
metric—they are about how far the prover is from the verifier—we extract a
non-metric model from them, using strand spaces. From this non-metric model,
together with purely local metric assertions about the time elapsed for a single
participant, metric consequences about space and time will follow. Lemma 2
justifies this step back to a conclusion about the distance to the prover.

Second, we show how to use the strand space protocol analyzer cpsa to
extract a set of non-metric executions for each distance-bounding protocol. From
these non-metric executions, we can draw conclusions about whether a protocol
achieves its metric goals, with the backing of Lemma 2.

Finally, we exhibit a taxonomy classifying distance-bounding protocols by
the assumptions that they require, to be sure of achieving their goals.



Strand spaces in spacetime. The idea for strand spaces came from an analogy
to spacetime diagrams in physics. A spacetime diagram organizes some physical
interactions by considering the world-lines of some entities as they progress
through time, moving in space. Moreover, the entities interact through messages,
whether transmitted as light or as other waves or particles; these messages travel
no faster than the speed of light c.

Protocol analysis is structurally similar: the world-line of a principal includes
message transmissions and receptions. If a principal is regular, i.e. acting in ac-
cordance with the protocol under study, these transmission and reception events
partition into a number of regular strands, meaning a finite sequence of trans-
mission and reception events ◦ ⇒ ◦ ⇒ · · · permitted by some protocol role. For
uniformity, we divide the actions of a Dolev-Yao adversary [12] into a collec-
tion of finite sequences of transmission and reception events; these are adversary
strands. A protocol execution consists of a finite collection of regular and adver-
sary strands, or initial segments of them, with two main properties:

– If a reception event receives a messagem, then some transmission event must
have sent m, i.e. ◦ m→ ◦; and

– the finite directed graph G must be acyclic, where G’s nodes ◦ are the events,
and G’s arcs →,⇒ are either message communications → or the succession
relation between two events along the same strand ⇒.

These are natural properties of causality. The first says that message reception
needs to be causally explained by some transmission. The second is the famil-
iar principle that causality is well-founded: You cannot go back and encourage
your grandparents to beget your parents, or not to. It certainly applies in our
context, in which message transmissions and receptions occur at discrete, well-
separated times, and where moreover none of the activities will stretch over long
(or cosmological) timescales.

Diagrams with these two properties are bundles, and bundles form the strand
space execution model. Bundles B have “forgotten” the metric that governs events
in spacetime, and retained only the strand structure and communication arcs.

Each bundle B has a partial order �B= (→ ∪ ⇒)∗, which is the weakest
reflexive, transitive relation that extends the succession relation ⇒ of nodes on
the same strand, and extends the communication relation ◦ m→ ◦.

The acyclicity justifies a well-founded induction principle on �B: If S is a
non-empty set of nodes of B, then there exist nodes in S that are �B-minimal
in S. Reasoning in strand spaces is ultimately justified by taking cases on these
minimal nodes, given the permissible regular strands and adversary strands.

Hence, strand spaces are particularly natural for reasoning about distance-
bounding protocols. The pure protocol analysis allows us to characterize the
bundles a protocol allows. These then may be embedded in spacetime in any
way that respects their causal structure, including the physical principle that
causality cannot propagate faster than the speed of light. If this implies that the
distance between two entities must have been below a selected bound d, then
the protocol has achieved its goal.
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Our overall strategy is akin to Meadows et al.’s 2007 work [24]. They capital-
ize on the causal characteristics of the challenge-response principles that govern
security protocol correctness in general, which thereby determine how events
can be ordered given the effects some of them must have on others. We add a
particular realization of these principles for a model of security protocols [14].
Since that model is backed by an efficient tool, namely cpsa, we can apply the
method on an industrial scale.

Mauw et al. [22] also observe the value of using the causal structure to guide
protocol analysis for bounding distance. A separate source brought the problem
back to our attention: Andre Scedrov and Carolyn Talcott discussed their work
on distance-bounding protocols, including round-off attacks, repeatedly at the
Protocol Exchange we periodically share [2,3,17,18]. The opportunity for an
analysis of the kind we will present here was a consequence of those discussions,
together with some preliminary work [33].

CPSA, a Cryptographic Protocol Shapes Analyzer. The protocol analy-
sis tool cpsa implements the enrich-by-need method [14,28,29]. cpsa carries out
protocol analysis by showing the analyst all of the minimal, essentially differ-
ent executions compatible with some scenario of interest, often a very small set.
By a scenario, we generally mean a situation in which some protocol roles have
executed at least part way, with some assumptions that some parameters are
freshly chosen, or some long-term keys are uncompromised. A skeleton means a
formal representation of such a scenario.

Starting from a skeleton A0, cpsa systematically explores how to add new
role instances and other information in ways that would help explain executions.
cpsa does not explicitly represent adversary actions, but simply keeps track of
what the adversary can obtain from the regular transmissions, subject to the
assumptions. Mathematically, cpsa explores skeletons by rising in a homomor-
phism ordering, and it stops along any branch of its exploration when it runs
out of possible explanations or reaches a realized skeleton.

A skeleton B is realized if, together with adversary actions compatible with
its freshness and non-compromise assumptions, it can form a bundle B. We say
that B is a skeleton of such a bundle B, and we say that a skeleton A covers
bundle B if there exists a realized skeleton B such that B is a skeleton of B, and
a homomorphism H : A ·→ B.

The set of minimal realized skeletons are called the shapes for the starting
skeleton A0. cpsa is useful because well-designed protocols often lead to small
sets of shapes, even though the set of shapes is large or infinite in unfavorable
cases.1 cpsa presents the shapes in a concrete, graphical form, allowing a logi-
cally naive designer to understand the effects of varying protocol choices.

Moreover, each shape contains the events and their ordering needed for the
non-metric, causal aspects of our distance-bounding analyses.

cpsa now allows assuming that certain messages pass over channels that
ensure confidentiality or integrity. Any protocol implementation must discharge
1 Indeed, since Andre et al. [13] proved the underlying problem class to be undecidable,
uniform termination is impossible.
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the assumptions, for instance by suitable cryptography. But cpsa can infer the
effects of the assumptions, independent of particular choices about how to dis-
charge them. We will use these channel assumptions in Section 4.

Protocol goals as formulas. cpsa offers a logical language LΠ to express
goals for a protocol Π [15,27]. LΠ includes the following types of predicates:

– For each role ρ ∈ Π, and for each transmission or reception position i along
ρ, LΠ contains a one-place predicate rρ,i(n) that asserts that a node n is an
instance of the ith event along role ρ.

– For each role ρ ∈ Π, and for each parameter or variable x that helps to
determine ρ’s instances, LΠ contains a two-place predicate pρ,x(n, v) that
asserts that node n’s instance for the x parameter is v.

– The causal ordering n ≺ n′ is expressed by a predicate prec(n, n′).
– Two nodes on the same strand satisfy the collinear predicate coll(n, n′).
– unique(v) is satisfied if v is fresh; non(k), if key k is non-compromised.
– Confidentiality and integrity for a channel c are conf(c) and auth(c).

Any skeleton A0 may be expressed by a conjunctive formula of LΠ . Thus,
a cpsa run starting from A0 determines what must be true in all Π-bundles
satisfying this formula, which we call the characteristic formula cf(A0) of A0.

A goal formula is a universally quantified implication ∀x . Φ =⇒
∨
i∈I ∃yi . Ψi,

where Φ and the Ψi are conjunctions of atomic formulas (see Def. 4).
The special case I = ∅ gives the empty disjunction

∨
i∈∅ with no way to

be true, i.e. false. A goal cf(A0) =⇒ false states that no Π-bundle exhibits the
scenario A0. If A0 assumes some putative secret k is heard unprotected, ex-
pressed in a parameter predicate plsn,x(n, k) for a special role, the conclusion
false ensures non-disclosure. Formulas with non-empty conclusions express au-
thentication properties. They say that the behavior in the hypothesis Φ requires
additional behavior found in one of the conclusions Ψi.

Indeed, a terminating run of cpsa may be summarized as a formula, which
we call a shape analysis formula [27]. Suppose, starting from the initial scenario
A0, cpsa terminates with the family of shapes {Bi}i∈I . It has discovered the
security goal formula cf(A0) =⇒

∨
i∈I ∃yi . cf(Bi); the homomorphisms from A0

to the Bi determine the quantified variables yi. The formula must be true because
the cpsa search is sound, i.e. it refines any skeleton A to a set of skeletons that
cover all of the executions that A covers. Moreover, it is a strongest goal with the
hypothesis cf(A0), because each of the shapes Bi really is an essentially different
scenario that can occur. No correct goal could rule any of them out.

Thus, the shape analysis formula is the strongest security goal achieved by Π
for this hypothesis [15,32]. In this way, cpsa allows us to discover what security
goals Π achieves, for the situations of concern to us.

As this suggests, there is a natural ordering on security goals that share
the same antecedent Φ, namely the entailment ordering on their conclusions∨
i∈I ∃yi . Ψi. There is also a dual ordering on security goals that share the same

conclusion Ψ . Namely, of two security goals Γ1 = Φ1 =⇒ Ψ and Γ2 = Φ2 =⇒ Ψ ,
Γ1 is at least as strong as Γ2 iff Φ2 entails Φ1.
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In Section 4 we use this idea to compare different protocols, according to
whether their shared distance-bounding conclusions require stronger or weaker
assumptions to assure. The cross-protocol use of formulas like this is justified in
our work on protocol transformation [15,32].

2 Adapting the strand model for distance-bounding

Let d be the usual Euclidean distance and c be the speed of light. We add metric
information to bundles in the simplest way:

Definition 1. Let B be a bundle, and let E : nodes(B)→ R4 be a function from
the nodes of B into spacetime. (B, E) is a spacetime bundle iff, for all n1, n2
such that n1 ≺B n2, letting E(n1) = (t1, x1, y1, z1), and E(n2) = (t2, x2, y2, z2):

1. t1 < t2; and
2. d((x2, y2, z2), (x1, y1, z1)) < c · (t2 − t1).

We will write dE(n2, n1) for d((x2, y2, z2), (x1, y1, z1)) and tE(n1) for t1.

Evidently, every spacetime bundle determines a (non-metric) bundle, namely its
first component. Indeed, intuitively, however the events of B have occurred in
space and time, they will satisfy conditions 1–2.

Conversely, any bundle B may be embedded into spacetime, i.e. it is the first
component of some spacetime bundle:

Lemma 1. Let B be a bundle. There exists an E : nodes(B) → R4 such that
(B, E) is a spacetime bundle.

Proof. We choose to let each strand be stationary. Construct E by well-founded
recursion on �B. For each n choose a time tE(n) that exceeds the time of its
immediate predecessors enough to allow its incoming messages to arrive. There
is no upper bound on the choice for tE(n). ut

Any skeleton A is compatible with or covers a (possibly empty) set of spacetime
bundles (B, E), namely all those where there is a H : A ·→ B such that B is a
skeleton of B.

Definition 2. Let A be a skeleton with collinear nodes n1 ⇒+ n2, and let n′ be
a node. We say n1, n2 bound separation from n′ in A iff n1 �A n

′ �A n2.

Lemma 2. Let (B, E) be a spacetime bundle; H : A ·→B, and B be a skeleton of
B. If n1, n2 bound separation from n′ in A, then

dE(H(n1), H(n′)) + dE(H(n′), H(n2)) < c · (tE(H(n2))− tE(H(n1))).

That is, using a local clock along the strand of H(n1), the principal executing
it can bound the distance to the node H(n′). Thus, reasoning about ordering
in a skeleton gives a uniform way to bound the distance between corresponding
events in all the spacetime bundles it covers.
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Proof. The homomorphism H preserves the ordering relations, as does the em-
bedding of the realized skeleton B into the bundle B. Thus, condition 2 in Def. 1
yields the desired inequality. ut
We express requirements on distance-bounding protocols as security goals. Since
we must talk about particular formulas and free variables, we will write formal
variables dne with a ceiling in the next few paragraphs to distinguish them from
our informal variables n ranging over nodes. Subsequently, we will revert to
the usual ambiguity between mentioning formal variables and using informal
variables. To express bounded separation goals, we distinguish particular formal
variables dn1, n2, n′e.
Definition 3. Let Γ be a security goal ∀x . Φ =⇒

∨
`∈L ∃y` . Ψ` in LΠ with

non-empty L; let dn1, n2e be node variables among the variables x, and dn′e be
among the variables y` for every `. Then:

1. Γ, dn1, n2, n′e is a distance-bounding requirement for protocol Π (or a re-
quirement, for short).

2. Π achieves the requirement Γ, dn1, n2, n′e, iff, for every realized Π-skeleton
B and each variable assignment η such that η satisfies B |=η Φ, there is
some ` ∈ L and an η′ extending η such that B |=η′ Ψ` and moreover
η′(dn1e), η′(dn2e) bound separation from η′(dn′e) in B.

Since both the conclusions Ψ` and bounding separation are preserved by ho-
momorphisms, as soon as they are satisfied in a branch of a cpsa, they will
remain true thereafter. Moreover, by Lemma 2, the requirement ensures that
some strand satisfying Ψ` will be no farther from a strand satisfying Φ than the
locally elapsed time ∆t · c/2 between the ith and jth node.

Hence, suppose we want to check if Π achieves a requirement Γ, dn1, n2, n′e,
where Γ is of the form ∀x . Φ =⇒

∨
`∈L ∃y` . Ψ`, and Φ is the characteristic

formula of a cpsa starting scenario A0, i.e. Φ = cf(A0).

1. Execute cpsa starting from the scenario A0, obtaining the set of shapes
{H` : A0 ·→ B`}`∈I ;

2. ascertain that each B` |=η Γ ;
3. for the satisfying variable assignments η′, check that η′(dn1e), η′(dn2e) bound

separation from η′(dn′e) in B`.

In the favorable case in which I is finite, these steps terminate.
We can easily express bounded separation as a conjunctive formula in the

variables dn1, n2, n′e, namely:

prec(dn1e, dn′e) ∧ prec(dn′e, dn2e),

which we will denote bnd_sep(dn1e, dn2e, dn′e). Thus, in practice we perform
surgery on the given goal Γ to obtain Γ+:

∀x . Φ =⇒
∨
`∈L

∃y` . (Ψ` ∧ bnd_sep(dn1e, dn2e, dn′e)).

cpsa can check this security goal directly, as we illustrate in the next section.
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3 Examples

In this section, we show how cpsa is used to find and fix a flaw in the Terrorist-
fraud Resistant and Extractor-free Anonymous Distance-bounding (tread) pro-
tocol [4]. The aim of its authors is to “obtain provable terrorist-fraud resistant
protocols without assuming that provers have any long-term secret key”. Alas,
the case in which tread is implemented with public key cryptography as shown
in Fig. 2 of [4] has an authentication failure.

Verifier Prover

◦
��

oo {|γ, [[ γ ]]sk(P )|}pk(V ) ◦
��

oo

◦
��
// m // ◦

��
•

� ��

// c // ◦
��

•
��

oo #(c,m, γ) ◦oo

◦ // “success”

Fig. 1. tread Protocol

Fig. 1 shows our model of the
tread protocol. Each participant, V
and P , has a public key pk(·) and a
private key sk(·). A message is en-
crypted with {| · |}pk(·) and signed with
[[ · ]]sk(·). The first message exchanged
in the protocol is γ signed by the
prover and then encrypted for the ver-
ifier.

All distance-bounding protocols
include a fast phase, where one prin-
cipal measures the time it takes for a
sequence of message interactions. Our
modeling of tread abstracts away
details of its fast phase by a pair of
messages. The two bullets • near the

clock � in the Verifier role show the beginning and end of the timed fast phase.
In tread, γ is a pair of random n-bit values γ = (α, β). During the fast phase

of the protocol, the Verifier sends n one bit messages that make up the contents
of randomly chosen n-bit message c. The Prover responds to the reception of ci
with ri, where

ri =

{
αi if ci = 0,

βi ⊕mi if ci = 1.

The Verifier declares success if it receives the responses it expects within the
protocol’s time bound. If the adversary cannot obtain γ, the adversary is highly
unlikely to provide the right n values for the ri. In that case, n bounded sepa-
ration claims are likely to hold.

In our protocol representation with a single fast exchange, the Prover sends
the hash of c, m, and γ, and the Verifier declares success if it receives that
message. Thus, in our version, we would like bounded separation to hold where
n1, n2 are the two Verifier nodes on the timed edge, and n′ is the Prover node that
transmits #(c,m, γ). The security goal Γ asserts that if a Verifier run completes,
a Prover run with matching V, P, γ,m, c parameters should also complete.

Analysis of tread Fig. 1 describes the tread protocol. Consider the point-
of-view in which the Verifier has run to completion with freshly chosen m, c and
non-compromised sk(P ), sk(V ). What else must have happened?
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Verifier Prover

◦
��

· · · � · · ·
{|γ,[[ γ ]]sk(P )|}pk(V )oo ◦

{|γ,[[ γ ]]sk(P )|}pk(V ′)oo

◦
��

m //

•
� ��

c //

•
��

#(c,m,γ)oo

◦ “success” //
Unique: c, m, γ

Non: sk(P ), sk(V )

Fig. 2. tread Shape

The shape found by cpsa is displayed in Fig 2. cpsa infers that the Prover
was active, but it may only have transmitted its first message, which may have
been altered before delivery by the adversary. The message received at the Veri-
fier’s 4th node can be synthesized by the adversary. cpsa is telling us that there
are bundles that are compatible with the shape in which adversary strands syn-
thesize all the messages received by the Verifier using only the message sent at
the Prover’s first (and only) node. Thus, neither Γ nor the bounded separation
property holds.

cpsa explains each step it takes on its way to finding its answers, and a
knowledgeable user can use this information to fix the protocol. However, we
press on, trying to fix the problem by adding a confirming message at the end
of the protocol. This is a reasonable thing to try, as at least one industrial
protocol uses this technique to (slowly) authenticate the replies sent during the
fast phase [8]. Plus, it is intuitively clear that this should allow the Verifier to
conclude that the Prover must have engaged in a fast phase.

Fig. 3 shows the amended protocol we call tread+. When started with
the point-of-view skeleton in which the Verifier runs to completion, cpsa finds
the shape in Fig. 3. This time, cpsa concludes that the Prover must have run
to full length. However, the mismatch between the first message sent by the
Prover and received by the Verifier is still present, so Γ fails. Message #(c,m, γ)
is received by the Verifier on the second timed node, and is also sent by the
Prover. However, cpsa does not report that the transmission has to precede the
reception: The adversary can synthesize #(c,m, γ) before the Prover sends it!
This occurs because the Prover’s random values leak in the first message. Thus,
bounded separation again fails.

The retread protocol fixes the authentication problem in the tread pro-
tocol. It alters the first message by including the name of the Verifier, V , in
the signed part of the message. Therefore, the first message in both roles of the
protocol is {|γ, [[ γ, V ]]sk(P )|}pk(V ). When cpsa is started with the point-of-view
skeleton in which the Verifier runs to completion, it finds the shape in Fig. 4.
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Verifier Prover

◦
��

oo {|γ, [[ γ ]]sk(P )|}pk(V ) ◦
��

oo

◦
��
// m // ◦

��
•

� ��

// c // ◦
��

•

��

oo #(c,m, γ) ◦

��

oo

◦
��

oo [[#(c,m, γ) ]]sk(P ) ◦oo

◦ // “success”

Verifier Prover

◦
��

{|γ,[[ γ ]]sk(P )|}pk(V )oo � ◦
��

{|γ,[[ γ ]]sk(P )|}pk(V ′)oo

◦
��

m // ◦
��

•
� ��

c // ◦
��

•
��

#(c,m,γ)oo ◦
��

#(c,m,γ)oo

◦
��

◦
[[ #(c,m,γ) ]]sk(P )oo

◦“success” //
Unique: c, m, γ

Non: sk(P ), sk(V )

Fig. 3. tread+ Protocol (l) and relevant shape (r)

Verifier Prover

◦
��

oo {|γ, [[ γ, V ]]sk(P )|}pk(V ) ◦
��

oo

◦
��
// m // ◦

��
•

� ��

// c // ◦
��

•
��

oo #(c,m, γ) ◦oo

◦ // “success”

Verifier Prover

◦
��

◦
��

{|γ,[[ γ,V ]]sk(P )|}pk(V )oo

◦
��

m // ◦
��

•
� ��

c // ◦
��

•
��

◦
#(c,m,γ)oo

◦ “success” //
Unique: c, m, γ

Non: sk(P ), sk(V )

Fig. 4. The retread protocol (l) and its shape (r)

No adversary behavior need occur in bundles compatible with this shape. What
cpsa learns is expressed in the shape analysis sentence:

If a Verifier with parameters P , V , c, m, and γ runs to completion, and
– c, m, and γ are assumed to be uniquely originating, and
– sk(P ) and sk(V ) are assumed to be non-originating,

then a Prover with parameters P , V , c, m, and γ ran to completion, with
bounded separation for the timed Verifier nodes and the 3th Prover node.

Adding V ’s name inside the signature in the Prover’s last message in tread+
also forces V and P to agree on V ’s identity, ensuring γ remains secret and
ensuring bounded separation. However, retread is a superior protocol since it
is shorter and requires only a single signature.
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4 Taxonomy

Much of the recent literature on symbolic analysis of distance-bounding protocols
has focused on classifying protocols according to their ability to resist various
kinds of attacks (e.g. [7,9,22]). Our position is that it is more useful to categorize
protocols according the security goals they achieve. We follow the approach
from [32] in which security goals are expressed as first-order logical formulas. The
strength ordering of goal formulas is naturally captured by logical implication.
If Γ1 and Γ2 are security goals, then Γ1 is at least as strong as Γ2 iff Γ1 ⇒ Γ2.

Definition 4. A security goal is a closed formula Γ ∈ LΠ of the form

∀x̄ . (Φ =⇒
∨
k∈K

∃ȳk . Ψk)

where Φ and Ψ are conjunctions of atomic formulas. We write hyp(Γ ) = Φ and
conc(Γ ) =

∨
k∈K ∃ȳk . Ψk.

Fundamentally, all distance-bounding protocols have the same minimal goal.
If the verifier accepts a run apparently with prover P , then P must have re-
sponded to the challenge after the start of the fast phase of the protocol and
before its completion. Protocols may have more stringent authentication require-
ments such as needing the prover to agree on the verifier’s name and other au-
thenticated data. But often such agreement is achieved in the service of the main
goal which is to ensure P must be close. We can naturally express this in our
goal language.

To say that the verifier has accepted a run apparently with P we may write

Φ1(n, P ) = VerifierDone(n) ∧ Prover(n, P )

where VerifierDone(·) is a predicate that holds for the last node of a verifier’s
run, and Prover(·) signifies the verifier’s value for the prover’s identity.

To express the requirement that P respond to the verifier’s challenge during
the fast phase, we need to identify the nodes starting and stopping the fast
phase. We can write

Φ2(n1, n2) = StartTimer(n1) ∧ StopTimer(n2) ∧ coll(n1, n2)

where StartTimer(·) and StopTimer(·) serve to identify the nodes starting and
stopping the fast phase on the verifier’s strand. coll(n1, n2) states that these
nodes start and stop the fast phase on the same strand. We similarly must ensure
that we are referring to the fast phase of the same strand as the one accepting
the run with P . It suffices to express that n and n1 are on the same strand.
Putting it all together, we have:

Φ(n, P, n1, n2) = Φ1(n, P ) ∧ Φ2(n1, n2) ∧ coll(n, n1) (1)

Equation 1 serves as the hypothesis for the distance-bounding security goal.
The conclusion must state that P responded to the challenge during the fast
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phase. As all distance-bounding protocols have an event in which the prover
sends the reply to a challenge, we use ProverReply(·) to denote such a node of
a prover strand. We again use Prover(·, ·) to express that the prover’s identity
for the ProverReply node is P . Finally, we use bnd_sep to express the ordering
required for the fast phase. The result is:

Ψ(n1, n2, n
′, P ) = ProverReply(n′) ∧ Prover(n′, P ) ∧ bnd_sep(n1, n2, n

′) (2)

The basic distance-bounding security goal is thus:

DB = ∀n, P, n1, n2 . Φ(n, P, n1, n2) =⇒ ∃n′ . Ψ(n1, n2, n
′, P ) (3)

However, no protocol can achieve DB as formulated in Eq. 3. The assumptions
in hyp(DB) are too weak to imply bounded separation. First, distance bounding
is hopeless unless the verifier chooses fresh values. We will henceforth always
assume this, adopting a corresponding strengthening Φ′ in place of Eq. 1.

But also, Φ makes no assumption about the authenticity or confidentiality of
any communications channels—either directly or through assumptions on cryp-
tographic keys. It is well-known that authentic or confidential channels cannot
be constructed without access to an authentic or confidential channel [21], or
corresponding secret keys. We identify a collection of additional assumptions
that can help to ensure a protocol can achieve the goal of bounding the distance
of the apparent prover. We identify three main types of assumptions:

s. Secrecy of long-term keys (private keys and/or shared symmetric keys)
f. Freshness of prover-chosen values
a. Authenticity of messages received during the fast phase

The assumption that a given long-term key has been kept secret is familiar
for cryptographic protocols of all types. In surveying the literature, there are
typically three types of long-term keys that distance-bounding protocols tend
to rely on: private keys belonging to the prover (sk(P )), private keys belonging
to the verifier (sk(V )), and symmetric keys shared by the prover and verifier
(ltk(P, V )). We may state the corresponding secrecy requirements as follows:

sltk(n, P, V ) = Verifier(n, V ) ∧ Prover(n, P ) ∧ non(ltk(P, V )) (4)
sprv(n, P ) = Prover(n, P ) ∧ non(sk(P )) (5)
svrf(n, V ) = Verifier(n, V ) ∧ non(sk(V )) (6)

The freshness of prover-chosen values can also play an important role in the
success of distance-bounding protocols. If a verifier believes the prover’s nonces
to be randomly chosen and shared only with the verifier, then by incorporating
the nonces into the reply during the fast phase the verifier can conclude it really
is the prover providing the reply. However, there are several natural reasons
this assumption may not be justified. In many distance-bounding protocols the
prover has very limited computational power, and so may also not have a reliable
source of randomness. It may also be the case that a dishonest and distant prover
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is willing to share their nonces with a malicious accomplice who is in physical
proximity with the verifier. This is related to Terrorist Fraud Attacks [11], about
which we say more in a later section. We may state the freshness assumption on
a prover’s nonce as follows:

f(n, np) = ProverNonce(n, np) ∧ uniq(np) (7)

In some protocols (e.g. tread), the prover contributes two nonces. In those
cases, for each of the nonces, f will include a pair of conjuncts like Eq. 7. In
our analysis below, we always make the same assumption on all of the prover’s
nonces. That is, we either assume all nonces are fresh, or we don’t assume any
are.

Finally, some protocols might be run in environments where it is reasonable to
assume that only regular (i.e. honest) provers can provide the replies during the
fast phase. Consider, for example, a secure facility that enforces physical access
control to a building that uses a distance-bounding protocol to gate access to
special rooms. The fast phase may use near-field communication meaning that
only those provers who have already passed the initial access control would be
within range. This is one way to ensure the authenticity of messages received
during the fast phase.

Whether malicious parties have access to the timed channel inbound to the
verifier is related to Distance Hijacking Attacks [9]. We may state the assumption
that the inbound timed channel is authentic as follows:

a(n, timed) = TimedChannel(n, timed) ∧ auth(timed) (8)

Equations 4-8 allow us to define a family of distance-bounding security goals
according to which subsets of the assumptions we include. Many protocols only
require the prover to have access to a single long-term key. Depending on whether
it is a shared symmetric key or a private signing key, we would use either Eqn. 4
or 5. By making all possible combinations of assumptions of type s, f, and a,
we naturally generate eight possible goals which we denote DBP({sfa}) according
to which subset of {s, f, a} is included in the assumptions of hyp(DBP({sfa})) So,
for example, DB = DB∅ because we make none of the assumptions. The goal
that only assumes authenticity of messages received during the fast phase is
denoted DBa, (with the set braces suppressed for readability) which stands for
the formula:

∀n, P, n1, n2, timed . Φ(n, P, n1, n2) ∧ a(n, timed) =⇒ ∃n′ . Ψ(n1, n2, n
′, P ).

Following the ideas in [32], this family of goals is naturally ordered by implica-
tion. Goal formulas that make fewer assumptions are naturally stronger. Figure 5
depicts the ordering of the family DBP({sfa}). Only the superscripts are denoted in
the diagram. This partial ordering can serve as a yard stick to measure the rela-
tive strength of a variety of designs for distance-bounding protocols. If a protocol
satisfies the goal at one point in the partial order, then it satisfies all goals below
it (since they are ordered by implication). Therefore, we can evaluate protocols
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∅

a f s

fa sa sf

sfa

Fig. 5. Strength ordering for DBP({sfa}).
Boxes indicate maximal strength achieved
by at least one protocol from our survey.

according to the maximal goals they
achieve. We performed a survey of nu-
merous protocols from the literature,
and the boxes indicate the maximal
strength achieved by at least one of
the protocols we studied.

For protocols such as tread that
rely on two long-term keys, one of the
keys is typically the prover’s signing
key, while the other is either the ver-
ifier’s private decryption key (sk(V ))
or a shared symmetric key (ltk(P, V )).
We may wish to separate the assump-
tions we make about their secrecy.
This yields a bigger family of goals
denoted DBss′fa where s represents the

assumption sprv (Eqn. 5), and s′ represents either sltk (Eqn. 4) or svrf (Eqn. 6)
depending on the design of the protocol. This yields a bigger lattice of security
goals depicted in Fig. 6. Again, the boxes indicate maximal strengths achieved
by at least one protocol among those we surveyed.

∅

a f s′ s

fa s′a s′f sa sf ss′

s′fa sfa ss′a ss′f

ss′fa

Fig. 6. Strength ordering for DBP({ss′fa}). Boxes indicate maximal strength achieved
by at least one protocol from our survey.

As stated above, we analyzed numerous protocols from the literature. Our in-
tent is not to be exhaustive, but rather to demonstrate the utility of assumption-
based analyses for comparing the relative strength of different designs of distance-
bounding protocols. Space constraints preclude an exhaustive description of all
the analyses, but the results are summarized in Table 12 and we discuss a few
noteworthy highlights below. The times reported are based on runs using a 2018

2 Cf. https://github.com/mitre/cpsaexp/tree/master/doc/dist_bnd_prots.
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MacBook Air with 1.6GHz Dual-Core Intel Core i5 processor with 16GB of
RAM. They represent the total elapsed time after verifying all 8 or 16 variants
of the goal depending on how many long-term keys the protocol uses. As the
table makes clear, cpsa is an extremely efficient tool.

Table 1. Various distance-bounding protocols ordered by strength.

Protocol Strength Elapsed Time (s)
Protocols with a single long-term key

Hancke and Kuhn [16] {s}, {a} 0.03
Kim and Avoine [19] {s}, {a} 0.03
Munilla et al. [26] {s}, {a} 0.07
Reid et al. [31] {s}, {a} 0.04
Swiss-Knife [20] {s}, {a} 0.05
Mauw et al. [23] {sf}, {a} 0.03
Meadows et al. [24] {sf}, {fa} 0.05
BC-Signature [6] {sf} 0.06
CRCS [30] {sf} 0.06
BC-FiatShamir [6] {sfa} 0.10

Protocols with two long-term keys
Paysafe [8] {sf}, {s′f} 0.12
tread-sk [5] {sfa}, {s′f} 0.08
tread-pk [5] {sfa} 0.05

tread variants introduced in this paper
tread-sk+ {sfa}, {s′f} 0.16
retread-sk {sfa}, {s′f} 0.07
retread-pk {sfa}, {ss′f} 0.06
tread-pk+ {sfa} 0.16

We first note that it seems to be easy for distance-bounding protocols to
satisfy the weakest goal (DBsfa or DBss′fa). Every protocol we checked was secure
under the strongest set of assumptions. The weakest protocol we discovered was
Brands and Chaum’s early adaptation of the Fiat-Shamir identification scheme
into a distance-bounding scheme [6]. This weak result may not be entirely ac-
curate, but might rather be an artifact of modeling algebraic properties with
logical axioms.

At the other end of the spectrum, there is a collection of protocols that all
satisfy both DBa and DBs which are incomparable goals [16,19,20,26,31]. Indeed,
this is the best we can hope for. As we have already seen, DB∅ is impossible to
achieve due to the need to have access to at least one confidential or authentic
channel [21]. DBf is unsatisfiable for the same reason. Therefore, simultaneously
satisfying both “shoulders” of Fig. 5 is the maximum strength possible.

It is instructive to consider the design principles used by various protocols
that contribute to their strength or weakness. The family of protocols achiev-
ing the maximum strength are all based on the same core design. Namely, in
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the fast phase, the prover’s reply cryptographically binds the verifier’s challenge
with a long-term shared symmetric key that serves to authenticate the prover.
The exact way in which these values are cryptographically bound varies widely,
but it typically involves generating a hash of a message containing at least the
shared key and the verifier’s nonce. Much of the variation in the designs is
attributable to the need to make the cryptographic operation as simple as possi-
ble. More computationally intensive operations force the verifier to accept longer
threshold times for the round trip because the verifier needs to account for the
computation time as well. Longer threshold times generally provide weaker dis-
tance guarantees. Our symbolic analysis only ensures that an upper bound on
the distance can be achieved. Since it does not consider the computation time
explicitly, CPSA does not distinguish among these protocols.

In order to better understand how different designs fall short of the maximum
strength, consider the protocol from Mauw et al. [23]. Rather than creating an
explicit binding between the long-term shared symmetric key and the verifier’s
nonce, they create an implicit binding. They do this with a message in the
setup phase. During this first phase, the prover sends a nonce to the verifier
encrypted under their long-term, shared symmetric key. During the fast phase,
the prover combines the verifier’s nonce with its own nonce from the first phase.
This creates an implicit binding between the verifier’s nonce and the long-term
key. But, crucially, this binding only succeeds if the long-term key has not been
compromised, and the prover’s nonce is indeed random and fresh. An adversary
near to the verifier who is capable of guessing the prover’s nonce (or an adversary
who can coerce the prover into leaking its nonce during the first phase) can cause
a distant prover to appear close to the verifier. Thus, in this protocol, the security
of the long-term key is not enough. The verifier must also assume the prover’s
nonce is not available outside the bounds of the protocol execution. This is
why it does not achieve DBs, but does achieve DBsf . When considering the goal
DBa, the authenticity of the fast channel guarantees the prover is honest. Since
the reply also contains the prover’s identity, this authentic channel successfully
authenticates the prover’s identity.

The remaining protocols suffer in similar ways. Generally speaking, they also
perform implicit bindings between the verifier’s nonce and the long-term key.
In attempting to make the prover’s response as fast as possible to compute,
various techniques are chosen that suffer from subtle algebraic collisions. For
example, the bindings are frequently created by performing an xor operation
which is very efficient. But such values are not inherently integrity protected, so
there is an opportunity for algebraic manipulation. This is contrast to a standard
hash function which may be slower to compute, but which does not admit such
algebraic manipulations.

We also analyzed tread together with a shared-key version also present
in [5]. We distinguish them as tread-pk and tread-sk respectively. We can
now compare them to the altered versions we introduced in Sec. 3. Our earlier
analysis focused solely on the goal DBss′f . While tread-pk fails to satisfy that
goal, it does satisfy DBsfa. This says that, when the verifier assumes its timed
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inbound channel is authentic, the verifier need not rely on the secrecy of its own
private key to achieve the distance bound. tread-sk additionally satisfies DBs′f

which implies the goal we investigated in Sec. 3 but is also incomparable with
the single strongest goal achieved by tread-pk. Although tread-sk does not
satisfy any goals stronger than the strongest one achieved by tread-pk, it does
satisfy goals the public key version does not. In this sense, tread-sk is strictly
stronger than tread-pk.

Notice that tread-pk+ provides no benefit beyond tread-pk, and similarly
for the shared-key versions. retread-pk, on the other hand, is slightly stronger
than tread-pk, although not quite as strong even as tread-sk since it doesn’t
achieve DBs′f . retread-sk satisfies the same goals as tread-sk, so adds no
value in a shared key context.

5 Related Work

Spacetime vs. causality. A key aspect of our approach to analyzing distance-
bounding protocols is the lack of any explicit account of time or distance in the
protocol models. We are not the first to make the observation that a causality-
based analysis is informative enough to draw conclusions about time and dis-
tance. We follow the ideas taken by Mauw et al. in [22] in which they introduce a
semantic model that explicitly accounts for time and distance. They then relate
that model to the execution model underlying Tamarin [25] just as we relate
spacetime bundles and realized skeletons. The underlying Dolev-Yao adversary
model of Tamarin is sufficient to capture all relevant attacks.

This is in contrast to the work of Chothia et al. [7], which uses specific
classes of processes to model dishonest provers, instead of relying solely on the
underlying Dolev-Yao processes. Their approach is also causality-based: Rather
than model time and distance quantitatively, they model “places;” processes in
the same place are nearby. They adapt the pi-calculus operational semantics [1]
so that processes that communicate during the fast phase have the same place.

Various other symbolic approaches account for time and distance more ex-
plicitly [9,17,10]. Our core insight arose from discussions with Andre Scedrov and
Carolyn Talcott when they presented their work starting with [17] at our Proto-
col Exchange meeting. Our discussions suggested we could separate the analysis
of the causal constraints from an analysis of the quantitative constraints of time
and distance. We believed we could first reason causally and collect quantitative
constraints along the way. The causal reasoning would justify deriving a tolera-
ble strand-local delay from the desired quantitative distance bound. Lemmas 1–2
justify the procedure.

Attack-based vs. assumption-based. Since the very early days of study-
ing distance-bounding protocols the focus has been on preventing various types
of attacks. The attacks are commonly referred to by names such as Terrorist
Fraud and Mafia Fraud. One frequently finds intuitive definitions of these attack
types based on the relative locations of Dolev-Yao attackers, honest & dishonest
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provers, and the verifier. The informality of these intuitions can make it quite
difficult to interpret how they should be formally defined in any given model.
Indeed, as observed in [22], there still remains some disagreement around the
appropriate formal definition of Terrorist Fraud.

The clearest, most formal definitions we could find were in [7]. They introduce
systematic definitions of dishonest provers for Mafia Fraud and Terrorist Fraud.
They then explore the set of combinations of verifiers, Dolev-Yao attackers, and
honest & dishonest provers in all possible relative locations, and organize them
into a hierarchy of attacks.

In our view, focusing on and explicitly modeling different attack types runs
counter to the spirit of most modern approaches to symbolic analysis of proto-
cols. The community no longer makes distinctions about whether an adversary
executes a reflection attack or a replay attack. The community no longer creates
different protocol models for closed systems and open systems.

Our approach is based on a lesson learned by one of the authors from an
observation made by Andre Scedrov regarding the classic Needham-Schroeder
protocol. The standard view that Lowe found a previously undiscovered attack
is somewhat misleading. The original protocol was secure under the assumptions
made by Needham and Schroeder. Lowe’s attack did not invalidate old security
claims. It merely showed that the desired authentication property doesn’t hold
under a weaker set of assumptions. In the language of strand spaces, Needham
and Schroeder assumed that initiators only engage in sessions with responders
whose private keys are non-originating. Indeed, under such an assumption the
protocol does achieve the desired conclusion. The question of whether such an
assumption is justified is separate from that of whether the protocol achieves
the right conclusion under the assumption.

This observation motivates the assumption-driven analysis in contrast to an
attack-driven analysis. We believe our focus on altering assumptions instead of
altering attacks helps focus attention on the security goals achieved by a distance-
bounding protocol regardless of the type of attack. Of course, the assumptions
one makes are closely related to the types of attacks considered. But we find the
shift in perspective to be enlightening.

∅

aDH f sTF

fa sa sfMF

sfa

Fig. 7. Conjecture: attacks and the as-
sumptions that prevent them.

Nevertheless, we have a conjec-
ture connecting our lattice of assump-
tions to the standard attack types in
the literature. Figure 7 annotates our
assumption lattice for protocols us-
ing one long-term key with three at-
tack types: Mafia Fraud (MF), Ter-
rorist Fraud (TF), and Distance Hi-
jacking (DH). For each attack type,
we associate it with the weakest goal
such that, if the protocol achieves that
goal, then it resists the given attack
type. So, for instance, if a protocol
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achieves DBa then it resists distance hijacking attacks. This association is only
an informal conjecture at this point. The corresponding association for protocols
with two long-term keys is less clear. It is worth noting, however, the the relative
order of the attacks in Fig. 7 matches the corresponding order embedding in the
attack hierachy of [7]. Establishing this conjecture, or making it more precise,
would require a more careful comparison of the semantics of the formal models.

Symbolic vs. quantitative analysis. Our symbolic analysis relies on a simple
and clear use of causal structures to infer the security goals achieved by distance-
bounding protocols. However, the simplicity and clarity is often obtained by
abstracting away the finer details of the fast phase. The fast phase typically
involves repeated round trips of single-bit messages, which we represent as a
single round trip of many-bit messages. The causal structure arises out of unique-
origination assumptions on nonces which preclude any other agent from being
able to send the nonce without first receiving it.

However, at the bit level, any given round trip does not guarantee the desired
causal order because an adversary or a dishonest prover always has a chance
of guessing the correct reply bit before receiving the challenge bit. The causal
conclusions only emerge probabilistically over time as challenge-response round
trips are performed. Symbolic analyses are therefore incapable of yielding insights
about how many challenges a verifier should issue to be confident of the causal
consequences. Recent work by Andre Scedrov and others explicitly addresses this
question for the Hancke-Kuhn family of distance-bounding protocols [2,3].

Another creative line of inquiry by Scedrov and others [18] involves a more
nuanced analysis of just how strongly the timing constraints can bound the dis-
tance between the verifier and the prover. They introduce a model that accounts
not only for the time it takes for a message to travel through space, but also for
the time it takes for instructions to execute. Because low-powered processors can
often only perform one instruction during any given clock tick, there can be time
between the event of starting the timer and the event of sending the challenge
that is unaccounted for by the timing constraint. They discover the possibility
of an “Attack Between the Ticks” in which a distant prover takes advantage of
this time discrepency to appear much closer than they actually are.

6 Conclusion

In this paper we introduced a version of strand spaces that explicitly accounts for
the physical properties of spacetime. We demonstrated that it is always possible
to embed the standard strand space bundles into spacetime bundles in such a
way that any quantitative constraints on distance and time are satisfied.

This justifies using cpsa without modifications to analyze the security of
distance-bounding protocols, illustrated by analyzing and repairing the tread
protocol which had previously been shown to be vulnerable to attack. A sur-
vey of various distance-bounding protocols from the literature places them in a
taxonomy of protocols according to their strength. In contrast to the prevailing
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trend, we organize our taxonomy not on the basis of attacks that are possible,
but—dually—on the basis of the assumptions required for a verifier to bound
the distance to a given prover.

We believe the shift in perspective to an assumption-based taxonomy from
an attack-based one provides a clearer understanding of the conditions under
which distance-bounding protocols succeed and fail.
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