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Abstract—The increasing number of persistent attacks on
computing systems has inspired considerable research in cyber
resilience solutions. Resilient system designers seek objective
approaches to aid in the comparison and selection of effective
solutions. Decision theoretic techniques such as Markov decision
processes can be leveraged for such comparisons and design
decisions. Markov decision processes facilitate examination of
uncertainty in system dynamics, diversity of responses, and
optimization for operational objectives. This paper proposes a
system design approach based in decision theory to achieve
effective cyber resilience solutions. The prototypical example of a
system with network intrusion detection and host reconstitution is
used to illustrate this approach and highlight difficulties designers
face due to the non-trivial coupling that may arise between
response mechanisms.

I. INTRODUCTION

Recently, the field of cyber resilience has received growing
attention as the cyber defense community has pivoted from the
pursuit of absolute protection to the exploration of methods
for damage mitigation and system recovery. Cyber resilience
has been defined as “the ability of cyber systems and cyber-
dependent missions to anticipate, continue to operate correctly
in the face of, recover from, and evolve to better adapt to
advanced cyber threats” [1]; this is a paradigm shift away
from the traditional focus of preventing intruders from entering
a system. Recent work in cyber resilience has subsequently
focused on the study of reconstitution, or actions that allow
for the recovery of infected systems back to a normal operating
state. Cyber resilient design attempts to blend traditional
security measures with proactive strategies and adaptive com-
ponents to create a system that can both defend and recover
from malicious attacks conducted by an adversary.

The design of cyber-resilient systems is a non-trivial task.
Even simple system architectures that operate under strong
assumptions about adversary behavior are prone to volatile and
unpredictable system dynamics due to inherent uncertainty in
system inputs and the effects of component interactions. This
difficulty is further exacerbated by the number and variety of
defensive and resilience solutions available, coupled with di-
verse organizational objectives, and shifting adversarial tactics.
Systematic analysis under a range of operational conditions
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is necessary for understanding the performance sensitivity
of candidate system designs; to perform such an analysis, a
flexible framework is needed within which system designs can
be quantitatively modeled, evaluated and compared. Such a
framework would ease the designer’s task of identifying cyber
resilient architecture options.

We contribute to the development of this framework by
proposing a decision-theoretic modeling paradigm. Specifi-
cally, we illustrate the advantages of a Markov Decision Pro-
cess (MDP) formulation [2], [3] for comparing cyber resilience
of a variety of system designs and configurations. Through the
use of an illustrative example, we demonstrate how an MDP
system model can be used to account for the variety of mission
objectives, input uncertainties, and design options in a unified
manner. Each MDP formulation entails an optimal policy (a
mapping from the system state to a recommended action). We
study the sensitivity of the utility of these policies to changes
in the adversary-controlled parameters of a model. Our illus-
trative example suggests how more complex systems can be
analyzed through the composition of component models. The
facility for composition allows for a unified examination of
design options from diverse resilience techniques.

Previous work in the formation of mathematical frameworks
of cyber resilience [4], [5] has focused on systems modeled
as interdependent service components connected over a graph.
Broadly, these approaches represent the system health as a
collection of component states, with the system transition-
ing between states in response to both external influences
and actions taken on components. Though these works are
important steps in model development, their focus has been
on recommending the best actions that return a system to
normalcy during operation. There appears to be an absence
of frameworks which address system designs with a mixed
set of cyber resiliency goals (anticipate, withstand, recover,
and evolve) in a unified manner, with the goal of supporting
both feature selection during system design and sensible action
recommendation during system operation. Our approach sug-
gests a unifying framework within which features contributing
to different resilience goals can be compared against each
other; a system designer can therefore decide, for example,
whether it is better to implement a feature that makes it easier
to withstand an attack or a feature that reduces the time to
recover from an attack. Furthermore, the system operator is
provided with guidance on how to best employ the resilience
features selected by the system designer.978-1-5090-3216-7/16/$31.00 ©2016 IEEE



Concretely, the main goal of this paper is to illustrate the
use of decision theory for a quantitative analysis of resilience
as it relates to the security of computing systems. In support
of this goal we provide:
• A formulation of systems analysis for cyber resilience

within the context of a decision-theoretic framework.
• An application of this formulation to an example system

with a specific set of resilience response mechanisms:
network intrusion detection and host reconstitution.

• An illustration of design options analysis using this
framework in comparing the resilience afforded by fam-
ilies of systems.

The paper is structured as follows. Section II describes pre-
vious work in support of cyber resilience. Section III describes
the use of a POMDP framework for examining resilience for
security of computing systems. Section IV introduces the for-
mulation of an example system as an MDP model. Section V
describes experiments aimed at comparing the resilience of
different system configurations. Section VI compares results
obtained from the calculation of optimal policies for a variety
of system configurations, with different resilience features,
and adversarial activity. The results illustrate how a designer
can establish which resilience features are most effective.
Section VII closes the paper with a discussion.

II. RELATED WORK

Previous work in support of cyber resilience has focused
on the development of a set of goals and a framework within
which these goals may be pursued; examples include the
Cyber Resiliency Engineering Framework (CREF) proposed
by Bodeau et. al [1], [6] and the CERT Resilience Management
Model [7]. Under these frameworks, generic cyber resilience
goals are defined by a cyber system’s ability to anticipate
adversarial attacks, continue operation under distress, recover
operation after sustaining an attack, and utilize previous en-
counters to better prepare for future attacks.

A. Mathematical Formulations of Cyber Resilience

Work in developing a mathematical formulation of modern
cyber resilience can be traced to Ramuhalli et. al [4], who
proposed a graph-based cyber resilience model for the study of
reconstitution actions. They model their system as a connected
network with nodes that host a set of dependent services; the
system maintains a state related to its health, with the ability to
transition between sets of fully operational, marginally oper-
ational, and compromised states in response to natural causes
or the actions of an adversary. Reconstitution is treated as an
optimization problem over the resulting graph, balancing the
value of continued operation against the costs of reconstitution;
resilience is achieved through complete reconstitution of lost
services.

Choudhary et. al [5] expand this graph-based framework by
modeling systems of interest as a collection of interdependent
system components. Here each system component is modeled
as a subgraph and assumed to provide a distinct service while
being susceptible to a particular type of attack; the system as a

whole is then modeled as the total set of connected sub-graphs.
Resilience is achieved by selecting a subset of pre-defined
mitigation actions. Choudhary et. al also provide an action
recommendation engine that takes as input the current system
state and provides as output an action recommendation. The
recommendation engine compiles sufficient statistics related to
performance and security measures of interest, and then solves
an optimization problem to provide a sensible advisory. In
contrast, our approach provides a recommendation engine in
the form of a policy; advantages include the ability to examine
policies without the need for a running system during design-
time, and fast real-time action lookup for a given system state
when in deployment.

B. Decision-Theoretic Approaches to Cyber Security

One well-explored approach to handling the inherent un-
certainty in adversarial cyber attacks is to adopt a learning-
based decision-theoretic model. These models are capable of
leveraging data to derive optimal actions based on the state of
the system. To the best of our knowledge, such models have
not been employed as generalized frameworks in the design
or orchestration of resilience for secure systems. Decision-
theoretic approaches have been applied extensively to the
adaptation of detection models in intrusion detection systems
(IDS); examples include a multi-agent reinforcement learning
approach considered by Servin and Kudenko [8], where agents
cooperate to detect intrusions, and a partially observable
Markov decision process (POMDP) formulation provided by
Lane [9], where incoming partially labeled data is assumed to
be generated by a normal user or an attacker. They have also
been applied in the selection of suitable policies for guiding
the operation of intrusion detection and response systems, as
demonstrated in the analysis provided by Kriedl [10].

The mention of previous IDS related efforts here is mo-
tivated only by their connection to our own illustrative ex-
ample of applying MDP models for design and operation
of resilient secure systems. Our main aim, however, is to
demonstrate the general utility of such models in providing
a unified framework for design of resilient systems, and their
subsequent operation. Since our illustrative example considers
IDS models, we provide some details on the IDS attributes
highlighted in our example. Despite the popularity of IDS
systems, the inaccuracy of detections and large volume of
false alarms (in some cases nearly 70% of all alerts) can limit
effectiveness [11]. IDS systems also have difficulty keeping
up with incoming network traffic which exceeds rates of a
few megabits per second. Studies with Snort, an open source
intrusion detection system, have reported dropped packets
proportions of more than 70% [12] due to network packet
throughput limitations.

In order to address this limitation, Bakhoum [13] disproved
the common notion that a strong IDS must inspect every
packet, showing instead that network security can be main-
tained while inspecting only a subset of incoming packets.
However, such a system is still vulnerable to allowing hostile
packets past the IDS and into the host, where an infection can



cause critical computing components to malfunction indefi-
nitely until taken offline for maintenance. This result suggests
that a controller taking actions over both the IDS and the
system host is needed to achieve the cyber resilience goals of
operation under distress and recovery after a sustained attack.

In order to highlight the use of decision theory for selection
of features during design, we include a host capable of
reconstitution as a separate component, connected to the IDS
by a communications link. This allows us to illustrate the
modular composition of a system from components and to
examine non-intuitive responses that can arise from com-
ponent interactions under a range of adversarial scenarios.
We consider how different design choices augment the space
of actions available for an operational system, and how the
addition of such actions affects overall cyber resilience. We
also illustrate the flexibility of decision theory based design for
assessing resilience of alternate operational objectives through
appropriate constructions of reward structures. This ability to
assess alternate designs in the context of operational objec-
tives allows for discriminating the effectiveness of resilience
features. For instance, an IDS, which is often viewed as a
valuable feature, might prove to be of little value for certain
designs and operational scenarios.

III. MDP FRAMEWORK FOR CYBER RESILIENCE

When we talk of the resilience of a system we refer to
the stability of that system’s performance under shocks of
various types. The performance is measured by some objective
function f , and the shocks are represented as changes in
the different inputs to f . There is no single right choice of
objective function to measure a system’s performance; in fact,
there may be many such performance measures of interest for
a given system. The system may similarly be more or less
stable as different inputs vary, so we might be more interested
in resilience to changes of particular inputs. In cyber resilience
we are primarily interested in the stability of an objective
function f under changes to inputs that are under the control
or influence of a cyber adversary.

A. Decisions in Cyber Resilient System Design

An important question in system design is whether adding a
given feature to a system will make it more resilient, and if so
by how much. Similarly, a system designer may be constrained
to add only one of two extra features, and so would like to
know which one has a greater effect on the system’s resilience.
It is common for such features to provide system administra-
tors with the ability to adaptively respond to adversary activity.
An important aspect in increasing the resilience is to choose
good policies for response. This suggests a connection between
cyber resilience and decision theory.

To demonstrate this connection consider a standalone sys-
tem that is connected to an external network on which an
adversary may reside. The adversary can inject malicious mes-
sages into the stream of incoming messages; these malicious
messages have some chance of infecting the system. The
system incurs some cost for being infected. Common methods

for making the system more resilient to incoming malicious
messages include (a) employing an intrusion detection system
(IDS) to filter out messages matching known malware signa-
tures and (b) periodically resetting or reconstituting the system
to a known good state. Both of these resilience mechanisms
may introduce a new cost of their own. If message inspection
cannot keep up with the rate of incoming messages, dropped
packets will reduce the performance of the system. Similarly,
resetting the system might entail taking it offline for some
time, which itself may carry some cost.

These feature interactions increase the complexity of the
system; by offering more actions to take in a given state
(e.g. inspect a message vs. let it pass through uninspected),
the variety of system behaviors depending on the policy
chosen is correspondingly higher. Given the additional cost
of some of the new actions, there is a chance that there are
new policies available to deploy that perform worse than the
original system. This suggests that techniques from decision
theory can bring value to the problem of cyber resilience.

B. Markov Decision Process Formulation

A popular model used in decision theory is a (fully ob-
servable) Markov Decision Process (MDP) or its partially
observable variant (POMDP) [2], [3]. In general a POMDP is
described by the tuple FΩ = (S,A, PS , R, Z, PZ ,Ω) where:

Parameter

S Set of states
A Set of actions
PS Probability distribution over resulting states
R Rewards associated with states and actions
Z Set of observations
PZ Probability distribution over resulting observations
Ω Set of system parameters

A POMDP model of the system described above can provide
us with parameterized, quantitative dynamics. The set Ω can
encode probabilistic parameters such as false positive and
negative rates of the IDS, or the likelihood that a malicious
message will infect the system. We can therefore investigate
and compare the system’s performance under changes to the
underlying parameters, and consider variations associated with
uncertainty of these parameters. Likewise, we can compare
the system behavior with and without the two resilience
mechanisms we described. Since such models admit solutions
(i.e. policies that optimize the utility function) it is sensible
to use the expected utility of the system under this optimal
policy as a performance measure. That is, V̄∗ = E[V∗(s)]
acts as a scalar metric for characterizing the performance of a
system modeled by FΩ. In this way the resilience of the system
roughly corresponds to the stability of V̄∗ under changes to the
underlying parameters Ω.

IV. EXEMPLAR PROBLEM FORMULATION

In the sequel, we illustrate the practicality and power of
our MDP cyber resilience framework via an examination of a
prototypical system.



A. Model Overview

Our example model features an intrusion detection system
protecting a host, as illustrated in Figure 1. The actions of
the intrusion detection system and the host are guided by a
controller. The action spaces over the IDS and host system
is specified as aI ∈ AI = {inspect, pass} and aH ∈
AH = {wait, reset}. Messages generated in the extranet

Extranet Intrusion Detector Host

Controller

X Y

AI

AH

Fig. 1. Intrusion Detection and Response System

first pass through the intrusion detection system before arriving
at the host system. A message’s infection state is given by
the random variable x ∈ X = {benign, malicious}. An
incoming message is malicious with probability λ. The
intrusion detection system can either pass the input message
or drop it, guided by the controller actions aI ∈ AI . The
random variable Y encodes the message output states as:
y ∈ Y = {benign, null, malicious}. If a message
successfully passes through the intrusion detection system it’s
outputs state y corresponds to that of the input x. Otherwise
the output has state y = null. In the following we detail the
internal operation of the intrusion detection system and the
host, as influenced by the actions (aI , aH).

B. Intrusion Detection System Model

The state transition diagram in Figure 2 describes the
operation of the intrusion detection system.

b = idle b = busy

aI = pass

y′ = x

aI = inspect

φ

y′ = x y′ = null

ψB ψM

aI = pass

y′ = x

(1− φ)φ

(1− φ)

y′ = null

aI = inspect

(1− φ)

φ

Fig. 2. Intrusion detector state transition diagram

The random variable B encodes this state as b ∈ B =
{busy, idle}. The intrusion detection system is in the
b = idle state if it is not inspecting a message for mali-
cious content, otherwise its state is b = busy. We employ
the Markov assumption to model transitions between states.
Therefore transition to a future state B′ = b′ depends only
on the current state B = b and the action AI = aI . The
intrusion detection system simply passes an input message
without inspection if the current action is aI = pass. Under
this action, the output of the intrusion detection system at the
next time step y′ corresponds to the infection state of x. In
this instance, the intrusion detection system returns to the idle
state with certainty. If the intrusion detection system starts in
the busy state, it transitions to the idle state with probability
φ. The value of parameter φ governs the mean holding time
in the busy state, and lower values of φ are interpreted as
settings where the system performs deeper message inspection.
When the system starts in the idle state, under the action
aI = inspect , it transitions to the busy state with probability
(1 − φ). In our model we make the simplifying assumption
that the intrusion detection system provides an output which
reflects the outcome of its inspection in the next time step,
independent of the busy time induced by inspect action.

We model the intrusion detection system as an imperfect
inspection system that can produces false positive and false
negative results. The false positive and false negative proba-
bilities for malicious message detection are specified by the
parameters βFP and βFN respectively. When the intrusion de-
tection system inspects a message, the message is classified as
malicious with probability ψM = λ(1−βFN )+(1−λ)βFP
and benign with probability ψB = λβFP +(1−λ)(1−βFN ).
When the intrusion detection system is in the idle state and
it classifies a message as malicious, that message is always
dropped and y = null for the next time step. While the
intrusion detection system is in the busy state, the action
to inspect also results in that message being discarded and
y = null. This behavior models computational limits typical
of intrusion detection systems when attempting to keep pace
under high traffic loads.

C. Host System Model

Figure 3 illustrates operational dynamics of the host, which
are also modeled by a Markov Decision Process. The host
system is described by two primary state variables that char-
acterize the operational and infection states. The host has two
operational states w ∈W = {full, reset}. In the full state,
the host is capable of fully processing incoming messages.
The reset state provides an opportunity for the host to either
avoid processing potentially malicious messages or allow for
repairs if the host was previously infected. The state variable
h ∈ H = {clean, infected} specifies whether the host
system is infected or not.

The state of the host system is influenced by the input
message state y and action aH . If the action state is wait

and incoming message is not malicious, the system remains
in the (full, clean) state. We allow the host to have some



w = full

h = clean

w = reset

h = clean

w = full

h = infected

w = reset

h = infected

aH = reset

(1− θ)

θ

ψ

(1− ψ)

y 6= infected

aH = wait

p(h′ = infected|y = infected, ·) = µ

aH = reset

aH = wait

y = (·)

Fig. 3. Host state transition diagram

intrinsic resistance to malicious incoming messages. This
ability is parameterized by µ: the probability of infection in
the event of a malicious message. Incoming malicious

messages cannot further infect a host, when the host state is
(full, infected). The reset action forces a transition to
w = reset state. Our model allows different mean holding
times in the reset state for the infection states clean and
infected, through separate restoration probabilities θ and ψ.

D. Stochastic Model Dynamics

In order to examine the stochastic dynamics of our model
as a whole we must consider the joint state of the system
S = (Y,X,W,H,B), under the influence of aggregate actions
A = {AI , AH}. The transition probability from current state
S to future state S′ conditioned on action A is factored as:

P (S′ | S,A) = P (Y ′ | X,B,AI)P (X ′)

× P (W ′, H ′ |W,H, Y,AH)P (B′ | B,AI)

The probability of a malicious incoming message is inde-
pendent of other state variables, and given as a Bernoulli
distribution with parameter λ:

P (X ′) = Ber(X ′ = x′ | λ) = λx
′
(1− λ)1−x′

Selected component probabilities are provided in Tables I
and II. For brevity of presentation, we have only specified the
non-zero probabilities in these tables. The probability function
P (Y ′ | X,B,AI) is specified in Table I. This function models
the output of our intrusion detection system at the next time
step as dependent only on the input message state, the intrusion
detection system busy state, and the controller action. The
probability function P (B′|B,AI) is specified in Table II. This
function models the intrusion detection system’s next busy
state B′ as depending only on the current busy state and
controller action.

TABLE I
INTRUSION DETECTOR OUTPUT TRANSITION PROBABILITY:

P (Y ′ | X,B,AI)

X B AI Y ′ P (Y ′ | X,B,AI)

benign idle inspect benign 1− βFP

benign idle inspect null βFP

malicious idle inspect null 1− βFN

malicious idle inspect malicious βFN

benign idle pass benign 1

malicious idle pass malicious 1
benign busy pass benign 1

malicious busy pass malicious 1

benign, malicious busy inspect malicious 1

TABLE II
INTRUSION DETECTOR OPERATION TRANSITION PROBABILITY:

P (B′ | B,AI)

B AI B′ P (B′ | B,AI)

idle pass idle 1

idle inspect busy 1− φ
idle inspect idle φ

busy inspect, pass busy 1− φ
busy inspect, pass idle φ

The transitions of the aggregate host states are given by the
probability function P (W ′, H ′ | W,H, Y,AH). This proba-
bility can be written in a fashion similar the other component
probabilities. The form of this probability highlights that the
host state is driven primarily by the message state Y and action
AH .

Our aim is to find optimal policies π∗(s) for the MDP
(S,A, P,R | Ω). We have specified the states S and actions A,
as well as the transition probability P for the parameter tuple
Ω = (λ, µ, φ, θ, ψ, βFP, βFN). The reward structure R remains
to be specified for a complete description of the MDP. In this
paper we will focus on the case where the rewards depend only
on the aggregate state SH = (W,H, Y ) of the host system.
The rewards for the host states are specified in Table III.

TABLE III
REWARD STRUCTURE: R(α) = R(SH)

W H Y R

full clean benign 1.0

full clean null 1.0 + αρ+

full clean malicious 1.0 + αρ−

full infected benign, null, malicious ρ

reset clean, infected benign, null, malicious 2ρ

In general the future-discounted expected return of applying
a policy π when starting in state S0 = s is given by the value
function:

Vπ = E

[ ∞∑
t=0

γtR(st, π(st))|S0 = s

]
(1)

The discount factor γ is constrained such that γ ∈ [0, 1]. A
solution to our MDP involves finding the optimal policy which



TABLE IV
FOUR SUBSYSTEMS

AH

AI {wait} {wait, reset}

{pass} Σ0 Σ2

{pass, inspect} Σ1 Σ3

maximizes the value function across all states. This objective
is formally expressed as:

π∗(s) = arg max
a

R(s, a) + γ
∑
s′

P (s′|s, a)V (s′) (2)

A scalar metric for characterizing the resiliency of our system
is the maximal expected utility V̄∗ = E[Vπ|π = π∗]. This ex-
pected value is calculated using the stationary state probability
distribution ϕ(s). The stationary distribution can be computed
as the normalized left eigenvector for the unit eigenvalue of
the transition probability matrix under optimal policy.

V. EXPERIMENTS

Our MDP model contains several sub-models that arise by
restricting the action space A = AI × AH . In particular,
consider the four systems that arise by restricting the action
spaces as described in Table IV. These systems are viewed as
candidate design proposals with different resilience features.

Σ0 represents a system without an IDS and with no ability
to reset or reconstitute the system if it becomes infected. By
adding the ability to inspect messages, Σ1 represents a system
with an IDS but with no ability to reset. Σ2 contains no
IDS, and so has no ability to inspect messages, but a reset
action can restore it to a full and clean state. Finally, Σ3

is the full system described in the previous section. Viewed
as MDPs, these systems share the same underlying transition
probabilities given a set of parameters Ω, but the restriction
of the action spaces reduces the set of policies we can choose
from when solving the MDP.

As discussed in Section III, we choose to measure the
performance of these systems using the maximal expected
utility under the optimal policy π∗, which we denote V̄∗.
Of course, V̄∗ really depends on the underlying system (i.e.
the set of available policies), on the parameter set Ω =
(λ, µ, φ, θ, ψ, βFN, βFP), and on the discount factor γ used to
discount the value of future rewards. We also might consider
each system under several reward structures parameterized by
ρ as described in the previous section. Thus, if we let Ω+

denote the augmented set of parameters Ω ∪ {γ, ρ} we may
write V̄ i∗ (Ω+) to denote the resulting maximal expected utility
under the optimal policy for system Σi. Beyond comparing
the performance (i.e. the values of V̄ i∗ (Ω+)) for the various
systems Σi, we are also interested in the resilience of the
systems. We want to know which systems are more sensitive
to changes in the parameters Ω+. We can thus examine the
effect that each of the functional mechanisms (IDS and reset
capability) has on both performance and resilience. Through

this type of examination a designer can assess which features
should be included in the objective design.

Ω+ is a large domain, and some of the parameters are more
likely to change over time than others. From the viewpoint
of cyber resilience, we are most interested in detecting sen-
sitivity to changes in parameters that are likely to be under
the influence of an adversary. By adjusting the number of
malicious packets sent to the system, the adversary has a
strong influence on the λ parameter. Similarly, an adversary
may have the ability to adjust the µ parameter governing
the likelihood of compromise given a malicious message. For
example, the adversary could send messages tailored to the
particular system that are more likely to cause infections than
generic attacks.

We therefore fix values for most of the parameters of Ω+

while varying the values of λ and µ. The fixed parameters are
φ = θ = ψ = 0.9 and βFP = βFN = 0.01. This assumes a
system that is likely to complete packet inspection in a single
time step, and is equally likely to recover from reset in a
single time step (whether or not it was infected at the time
of reset). The IDS is assumed to have very high accuracy
with very low false positive and negative rates. We also set
γ = 0.95 indicating that we only slightly discount the value
of future states. Finally, we fix the parameter for the rewards
to be ρ = −1.5.

Fixing these parameters means that V̄ i∗ (Ω+) defines a sur-
face over the unit square as λ and µ each vary over [0, 1]. We
compute and plot various cross sections of this surface. In par-
ticular, we consider cross sections for µ ∈ {0, 0.25, 0.5, 0.75}
letting λ range over [0, 1] in increments of 0.01. The next
section contains the results.

VI. RESULTS

In this section we present results for the experiments de-
scribed is Section V. Our experiments cover a limited param-
eter space: λ ∈ [0, 1] and µ ∈ [0, 1]. The remaining parameters
in the set Ω have values: φ = 0.9, θ = 0.9, ψ = 0.9,
βFP = 0.01, βFN = 0.01. These parameters characterize a
system that can quickly recover from busy and reset states.
This system is also fairly accurate in its classification of
inspected incoming messages. We will examine the resiliency
of this system for two different reward structures: R(0)

H and
R

(1)
H for reward parameters ρ+ = −1.75, ρ− = −2.75, and

ρ = −1.5.

A. Baseline System

We start by considering the system Σ0 with the reward
structure R

(0)
H . This system has a restricted action space

(AI , AH) = ({pass}, {wait}). The reward structure R(0)
H fa-

vors the system’s occupancy of state (w, h) = (full, clean).
In the absence of any incoming malicious messages (λ = 0),
the host system is always in this state, with expected utility
V̄∗ = 1/(1 − γ). This value of expected utility serves as an
upper bound on the performance the system can achieve. For
non-zero probability of malicious incoming messages (λ > 0)
the host system is always in state (w, h) = (full, infected) ,



with expected utility V̄∗ = ρ/(1−γ). We note that the expected
utility remains constant for values of λ > 0, because the
reward structure favors the state (w, h) = (full, infected)
irrespective of the value y. Due to the low utility value, this
baseline system may be viewed as a poor resilience candidate.

B. Adding an IDS

System Σ1 adds an intrusion detection capability whose
objective is to intercept malicious messages before they reach
the host system. However the host in this system lacks the
ability to reset if it is infected. The presence of an intru-
sion detection system provides some protection by dropping
malicious messages. However, some malicious messages do
ultimately get past the intrusion detection system and suc-
cessfully infect the host. Without the benefit of a reset, the
host eventually enters the state (w, h) = (full, infected),
which serves as an absorbing state for the system for λ > 0.
Thus the expected utility for this system has the same behavior
as that for system Σ0, for reward structure R(0)

H . This result
appropriately suggests that little value is derived by adding
an intrusion detection system, without a host based mitigation
mechanism, based on long-term (stationary) behavior of the
system.

C. Adding Reconstitutive Actions

Now we consider the systems Σ2 and Σ3, which include
hosts that can reset in order to mitigate the effects of
malicious messages. For the reward structure R

(0)
H , the in-

trusion detection system has been shown to add little value.
We therefore expect benefit under this reward structure to
be derived mainly from mitigation mechanisms at the host.
Computed results of the expected utility under optimal policy
are consistent with this intuition. The expected utility curves
for system Σ3 are shown in Figure 4 over a range of values
for (λ, µ). The expected utility V̄∗ reaches its maximum value

Fig. 4. Expected Utility for System Σ3 with Reward Structure R(0)
H

(1/(1 − γ) = 20) in the absence of incoming malicious
messages (λ = 0), or when malicious messages have no
impact on the host (µ = 0). The expected utility diminishes
quickly with increases in the probability of malicious messages

(λ) and the probability of host infection (µ). The expected
utility approaches its minimum value (ρ/(1 − γ) = −30) as
(λ, µ)→ (1.0, 1.0).

With reward structure R(0)
H it is difficult to see the added

benefit provided by an intrusion detection system, working in
cooperation with host-based mitigation mechanisms. We can
reveal this benefit by considering a modified reward structure
R

(1)
H . In this modified structure we assign higher rewards

for the absence of malicious passed messages, along with
an uninfected and fully functioning host system (i.e. y ∈
{benign, null} and (w, h) = (full, clean) respectively).
The benefit of cooperative operation of an intrusion detection
system with host mitigation mechanisms is highlighted by
comparing the expected utility of systems Σ2 and Σ3 with
the modified reward structure R(1)

H . Results for system Σ2 are
shown in Figure 5. We note that this system lacks an intrusion

Fig. 5. Expected Utility for System Σ2 with Reward Structure R(1)
H

detection capability, but does possess host-based reconsti-
tution. The observed monotonic reduction in this system’s
expected utility with increases in probability of malicious
messages is consistent with the new reward structure, which
favors the absence of such messages even for µ = 0. A further
decrease in utility is observed as the susceptibility of the host
to malicious messages increases (µ > 0). These results
suggest the reset feature to be a valuable resilience design
option for the system.

D. Combining Reconstitutive Actions with an IDS
The results for system Σ3, which augments Σ2 with an

intrusion detection capability, are presented in Figure 6. The
difference in resiliency offered by systems Σ2 and Σ3 can
be understood by examining the plots in Figures 5 and 6
for corresponding values of µ. We recall that the intrusion
detection system offers little benefit on its own. However,
Figures 5 and 6 now reveal that the addition of intrusion
detection capabilities provides an increase in expected utility.
The cooperative operation of intrusion detection and host
based mitigation capabilities is particularly evident for higher
probabilities of incoming malicious messages (λ), and high
values of host susceptibility (µ > 0.5). It is interesting to



Fig. 6. Expected Utility for System Σ3 with Reward Structure R(1)
H

note that, for lower host susceptibilites, the host based reset

mechanism offers the best mitigation to adversarial activity. As
the host susceptibility increases, the intrusion detection system
provides supplementary assistance against adversary attacks.

We note that the results shown in Figures 4-6 align well
with our notion that resilience is connected to both the
utility function’s value and sensitivity (given by slope). As an
example of this notion, note that we do not consider system
Σ0 resilient, despite the fact V̄∗ is constant for all values of
λ > 0; this is due to the utility over λ > 0 being at a minimum.
These results highlight the value of our approach by revealing
scenarios in which the inclusion of an IDS improves resilience.

VII. CONCLUSIONS

In this paper we have proposed decision theory as a suit-
ably flexible framework for examining cyber resilience of
computing systems. We have advocated the use of MDPs
(or the more general variant POMDPs) for modeling a range
of system designs, while incorporating uncertainty in system
dynamics. MDPs also provide a flexible way of assigning value
to desired system behaviors using rewards and a means of
making optimal decisions that support resiliency goals.

In order to make our proposal concrete, we have chosen to
analyze commonly used resiliency mechanisms: an intrusion
detection system and host-based system reconstitution. The
overall system has been modeled as a MDP. We have taken
care however to treat the intrusion detection system and the
host as separate components, with distinct state transition
models. The coupling between the two components is via the
messages that are passed from one to the other. Our model
system has a number of tuning parameters, which facilitate the
examination of a variety of behaviors and responses. However,
we have chosen to focus on parameters that have a dominant
connection with adversary behavior: the malicious message
probability (λ) and the host infection probability (µ). Using
this model we have illustrated how a comparative analysis of
design alternatives can be formulated by examining different
options for the action space and reward structure.

A quantitative comparative analysis of resiliency for a set
of design alternatives has been performed for a common
base system model that includes an IDS and host-based
reconstitution capability. In this analysis we have selected
reward structures that focus on the host’s behavior, while
allowing the coupling between the IDS and host to drive
optimal actions for both components. The expected utility V̄∗,
derived from stationary probabilities based on optimal actions,
has served as a scalar metric for understanding the resiliency
of various design alternatives. We note that this particular
metric is focused on assessing the defender’s ability to weather
adversarial activity.

In this paper we have examined resiliency from the per-
spective of the defender. For instance have not developed a
metric that characterizes the amount of effort expended by
an adversary to successfully impact system function. We have
also assumed that state information about adversarial actions
(malicious messages), and host infection state are known.
The ability to jointly optimize actions of the IDS and host is
also assumed. A natural extension of our work would seek to
relax these assumptions.
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