
Collaborative Planning With Privacy∗

Max Kanovich
Queen Mary, University of London

mik@dcs.qmul.ac.uk

Paul Rowe, Andre Scedrov
University of Pennsylvania

{rowep, scedrov}@math.upenn.edu

Abstract

Collaboration among organizations or individuals is
common. While these participants are often unwilling to
share all their information with each other, some informa-
tion sharing is unavoidable when achieving a common goal.
The need to share information and the desire to keep it pri-
vate/secret are two competing notions which affect the out-
come of a collaboration. This paper proposes a formal
model of collaboration which addresses privacy/secrecy
concerns. We draw on the notion of a plan which origi-
nates in the AI literature. We consider transition systems
in which actions have pre- and post-conditions of the same
size. We show it is PSPACE-complete to decide whether a
given such system protects the privacy/secrecy of its partic-
ipants and whether it contains a plan leading from a given
initial state to a desired goal state.

1. Introduction

With information and resources becoming more dis-
tributed interaction with external services is becoming more
necessary. There is a lot of software available which is de-
signed to foster collaboration through communication, re-
source sharing and data sharing. Collaborating agents are
usually viewed to have a friendly relationship in which they
share a common goal. A common example can be found
in companies which have a variety of departments work-
ing together to bring a product to market. In such situations
privacy/secrecy is not always an obvious concern. However,
just because parties are willing to collaborate does not mean
they are ready to share all their information or resources.
The distribution of health records is a good example.

Personal medical information can be quite sensitive.
Hospitals take great care to ensure that information is shared

∗Research partially supported by OSD/ONR CIP/SW URI “Software
Quality and Infrastructure Protection for Diffuse Computing” through
ONR Grant N00014-01-1-0795 and OSD/ONR CIP/SW URI “Trustwor-
thy Infrastructure, Mechanisms, and Experimentation for Diffuse Com-
puting” through ONR Grant N00014-04-1-0725. Additional support from
NSF Grants CNS-0429689 and CNS-0524059.

and protected appropriately. There are quite detailed laws
which specify exactly how a hospital may or may not dis-
tribute medical records. Some level of sharing is unavoid-
able. In order for a procedure to be covered by a patient’s in-
surance company, the hospital must tell the insurance com-
pany what procedures were performed, as well as the di-
agnosis. Only then can the insurance company decide if it
will cover the cost. But the insurance company should not
be given other private information about the patient. Hospi-
tals may also provide aggregate data on patients to students
for educational purposes. This aggregate data should be ap-
propriately sanitized for release to students. The same in-
formation, however, might not be acceptable for release to
the general public.

Privacy/secrecy in collaboration doesn’t only apply to
personal information. It is common for documents to be
written by two or more authors from distinct organizations.
For instance a position paper regarding computer industry
practices may be written by individuals representing dif-
ferent companies or government agencies. These individ-
uals and the organizations they represent have a clear, com-
mon goal of publishing their joint position. Each author
might know some relevant information which is a company
secret. They are therefore unwilling to share it with the
others. What each author contributes to the paper may be
viewed as a sanitized version of his or her secret knowl-
edge. This knowledge is transformed in some way that
allows it to be published. For example, an author might
provide general information about how a proprietary algo-
rithm works while removing details that would allow others
to duplicate it. This type of situation often arises in the
discussion of multilevel security (MLS or MILS) and non-
interference [23, 11, 27].

When doing scientific research, researchers must find
a balance between sharing too much information and not
enough. On one hand, a principal goal of research is to
obtain and publish results. On the other hand, if researchers
provide their raw data to others too soon, another group may
announce the results first. Data sharing is prominent in the
fields of comparative genomics and systems biology where
the focus is on integrating and analyzing large amounts of

1

dynamic and growing biological data (see [29, 13]). Sci-
entific data sharing also has the converse problem. Scien-
tists often rely on data from outside sources. The choice of
whether or not to use outside data depends on the source
of the data. The choice also depends on whether the out-
side data is consistent with the private/secret data. Research
groups may have informal policies, or practices that deter-
mine when they are willing to incorporate outside data into
their results.

So far we have discussed privacy/secrecy only with re-
spect to information. However, it can also apply to sensi-
tive material resources. Consider a chemical plant which
has various sectors designed to keep chemicals physically
separate for safety reasons. While separation is clearly nec-
essary, the chemicals must also be distributed from time to
time in prescribed amounts. There should be strict guide-
lines restricting the conditions under which chemicals are
distributed, and their quantity in transit.

Privacy/secrecy concerns are present in all of these sit-
uations. Successful collaboration depends upon the proper
balance between the protection and release of information
or resources. In particular, collaboration is often not possi-
ble without some form of release of resources or informa-
tion. The main privacy/secrecy concern is that the private
(High) data of a participant might be learned by the others
from the data which is released (Low data).

In this paper we present a model of collaborative systems
at an abstract level. We draw on previous work in planning
and state transition systems and their connection to linear
logic. We use local state transition systems in which we
model private data through the use of a syntactic conven-
tion on predicate symbols. The global system state can then
be thought of as a collection of local states (comprised of
private or High facts) together with some shared group state
(comprised of group/public or Low facts). In fact, we use
several distinct High labels, with one for each agent, and a
single Low label. We force the global state to change in-
crementally through local transitions that affect at most one
local state at a time. A collaborative plan is then a sequence
of transitions which takes the global state from some initial
configuration to an agreed goal configuration.

We consider systems with well-balanced transitions
which have the same number of facts in both the pre-
conditions and the post-conditions. Intuitively, this means
that each agent has a private (High) database, and there is
a shared group (Low) database. The total number of fields
in these databases is fixed, and the agents update the fields
instead of creating new ones.

We find the complexity of determining the existence of
a collaborative plan with privacy/secrecy. Our focus is
on the interplay between two concerns: Can we demon-
strate the existence of a collaborative plan, and can we do
so while providing some privacy guarantees to the partici-

pants? Since the information which is released is consid-
ered safe to distribute, the main privacy concern is that the
other collaborators could collectively learn the secret infor-
mation of some participant. If a piece of information is se-
cret at the beginning of a collaboration then a local state
transition system protects that information if it is never re-
leased throughout the course of any plan.

Our main complexity results (Corollary 6.3 and Corol-
lary 6.6) combine to say that given a local state transition
system, and given an initial configuration W and a goal
configuration Z, the problem of deciding

(a) if a collaborative plan exists which leads from W to the
goal Z, and
(b) if the system can never release the private (High)
information of any participant

is PSPACE-complete. We also show in Corollary 6.5 that if
we fix in advance the size of the domain and the number of
relations considered, that the above problem can be solved
in polynomial time.

We also demonstrate the logical foundation of our ap-
proach in linear logic [9, 14]. While this is not necessary in
determining the complexity of the planning problem, it re-
lates our approach to a number of similar formalisms which
have had success in the past. On the one hand, there is a
wide literature on viewing the classical planning problem
in logical settings (see e.g., [14, 20, 1, 26]). On the other
hand, multiset rewriting formalisms have proved useful in
the analysis of security protocols (e.g., [5, 2]) as well as in
the field of computation (e.g., [19, 16, 17, 15, 18]).

The paper is structured as follows. Section 2 recalls sin-
gle agent action systems and the classical planning problem.
In section 3 we present state transition systems with multi-
ple agents and an extension which accounts for private data.
We define collaborative planning in this setting. Section 4
discusses the relevant privacy properties. Logical founda-
tion of our formalism is presented in section 5. Section 6
considers the complexity of the planning problem with pri-
vacy. We discuss related work in section 7. We present
conclusions and future work in section 8.

2. Action Systems

A typical problem in Artificial Intelligence is that of a
robot manipulating its environment in order to achieve some
desired configuration. The robot is an agent which has lim-
ited abilities to sense and interact with its environment. The
robot has at its disposal a set of actions which can change
the state of the environment. The planning problem is that
of trying to find a sequence of actions which will transform
the environment from an initial state into a specified goal
state.

2

These notions are formalized in action systems which
specify how to describe the environment, what actions are
available to the agent and how those actions affect the en-
vironment. The environment is characterized by a finite set
of objects and relationships between those objects. Each
action changes the relationships between the objects. Old
relationships may be destroyed while new ones are simulta-
neously created. Each action is enabled by certain relation-
ships between the objects. This means that not every action
can be applied in every configuration of the environment.

To describe the environment we use a finite first order
language without function symbols. Specifically, we use a
finite set of constants to represent the objects of the envi-
ronment. A finite set of predicates, will represent the pos-
sible relationships between the objects. A closed atomic
formula will be called a fact. We define a state of the en-
vironment to be a set of facts. To illustrate the definitions
we use an example common from the literature: the blocks
world (e.g., [14, 20, 26]).

In this example there are three blocks represented by
the costants a, b, and c. There are five predicates with the
following interpretations:

ONTABLE(x) : x is on the table,
ON(x, y) : x is on top of y,
CLEAR(x) : nothing is on top of x,
HOLDS(x) : the robot holds x,
HANDEMPTY : the robot’s hand is empty.

We can now represent the relative positions of the blocks
on the table. One possible state of the environment is the
following:

{ONTABLE(a), ON(b, a), CLEAR(b), ONTABLE(c),

CLEAR(c), HANDEMPTY}.

This represents the situation in which b is stacked on a, and
c sits on the table with nothing on top of it. We will typically
use U, V,W and Z to represent states.

We now need to describe how the environment changes
from one state to another. This is done through actions.
Formally, an action is a map between states. Each action
α is defined in terms of pre- and post-conditions denoted
pre(α) and post(α) respectively. The domain of α is any
state W in which pre(α) is a substate, (i.e. pre(α) ⊆ W).
If the state W is the domain of α, we say that W enables α.
The result of applying the action is to replace pre(α) with
post(α) in the state. That is, α(Z∪pre(α)) = Z∪post(α),
where Z∩pre(α) = ∅, and Z∩post(α) ⊆ pre(α). We can
thus represent the action as pre(α) → post(α). The agent
can choose nondeterministically to apply any action which
is enabled.

In our blocks world we have actions defined by the
following conditions.

take(x): {HANDEMPTY, CLEAR(x), ONTABLE(x)} →
{HOLDS(x)}

remove(x, y): {ON(x, y), HANDEMPTY, CLEAR(x)} →
{HOLDS(x), CLEAR(y)}

stack(x, y): {HOLDS(x), CLEAR(y)} →
{HANDEMPTY, CLEAR(x), ON(x, y)}

put(x): {HOLDS(x)} →
{ONTABLE(x), CLEAR(x), HANDEMPTY}

The facts expressible in an action system determine
a collection of possible states (viz., the power set of the
set of facts). We may have cause to view some states as
inconsistent. For example, consider the state

{ON(a, b), ON(b, a)}

Under our interpretation of the predicates, this state corre-
sponds to blocks a and b being stacked on top of each other.
Since this is physically impossible we want to introduce a
mechanism that restricts the set of states we are willing to
consider.

Let Σ be a subset of the states of an action system.
These will be the states which we consider consistent. We
say that an action system is compatible with Σ if every
action preserves consistent states. Formally, for every state
W ∈ Σ and for every action α we have

if pre(α) ⊆ W then α(W) ∈ Σ.

The planning problem is formulated in terms of an
action system and set of states Σ which is compatible with
the action system. Before we formulate the problem we
must define a plan. A plan is a chain of actions. We say a
plan leads from an initial state to a (complete) goal state if
the following all hold.

(i) The first action of the plan is enabled by the initial
state.

(ii) The resulting state of each action enables the next ac-
tion in the plan.

(iii) The resulting state of the final action is the goal state.

Often a goal will not describe the entire environment.
The goal could simply be any state in which block b
is on block c. The position of a is irrelevant as long
as it does not prohibit the goal situation. To express
this idea we say that a plan leads from an initial state to a
partial goal state if (i) and (ii) hold, and in addition we have

3

(iii’) The partial goal state is a substate of the state which
results from the final action.

The planning problem is the following. Given an ac-
tion system, an initial state W and partial goal state Z, does
there exist a plan which leads from W to the partial goal Z?

The term plan is suggestive of the fact that the agent is
meant to work out a plan before applying any actions. This
is important because actions destroy old states. In many
cases actions may be reversible, but this is not necessarily
so. If an agent applies an irreversible action it may destroy
its chances of reaching the goal. An abstract analysis be-
fore the agent starts performing actions can prevent such
missteps.

3. State Transition Systems

3.1. Multiset Rewriting

Planning may also be considered to be part of a larger
paradigm of state transition systems. State transition sys-
tems model concurrent computation by keeping track of a
global state which is manipulated by multiple agents. Each
agent uses a set of transitions in order to change the global
state. By changing the state an agent may enable other
agents to take further steps. We present state transition sys-
tems as multiset rewriting systems.

At the lowest level, we have a signature Σ of predicate
symbols P1, P2, . . ., and constant symbols c1, c2, A fact
is a closed, atomic predicate over multi-sorted terms. Facts
have the form P (t̄) where P is an n-ary predicate symbol
and t̄ is an n-tuple of terms, each with its own sort. A state,
or configuration of the system is a finite multiset W of facts.
The system evolves over time by way of a set of transi-
tions. These transitions specify a substate which is to be
rewritten as another substate. A transition will appear as
X → X ′ where X and X ′ are multisets of facts. We call X
the enabling substate and X ′ the resulting substate of the
transition. We will use the convention that concatenation
of multisets, such as WX , represents their multiset union.
The transition X → X ′ thus transforms the state WX into
the state WX ′. It erases the multiset X and replaces it with
X ′.

We extend this notion of system evolution to that of
reachability of a state Z from a state W . Given a set R
of transition rules, if there is a sequence of (0 or more) tran-
sitions from R which transforms W into Z, then we say that
Z is reachable from W using R.

Notice that these notions fit well with the classical ideas
from planning. As discussed in [14, 20], the environment
state is now described by a multiset of facts instead of a set.
Actions and transitions behave in the same fashion, creating
new state information while destroying old information. In

fact, from now on we will use the terms action and transi-
tion interchangeably. State reachability corresponds to the
existence of a plan which transforms the environment from
an initial situation to a goal situation.

3.2. Local State Transition Systems

We now want to extend these notions to a situation where
each agent has access to private data which is inaccessible to
all other agents. This requires us to extend the definitions a
little. We now make a distinction between private facts and
facts which are accessible to the whole group. As a starting
point, we restrict our terms to be constants and variables. In
the future, we would like to consider a richer language of
terms.

A signature Σ consists of predicate symbols with their
arity, and many sorted constants. As above, a fact is a
closed, atomic predicate, but now we differentiate between
private facts and group, or public facts using a syntactic con-
vention. If a fact is private to participant A, we annotate the
predicate with a subscript as, PA(t̄). We call this a pri-
vate fact, and we will often say that agent A owns PA(t̄),
or even A owns t̄. Group facts are annotated with a prime
marker as P ′(t̄). A participant is said to know a fact if it
is a group fact or if that fact is owned by the participant.
We extend this notation to multisets of facts, so the multiset
XA represents a multiset of facts all of which are owned by
participant A. Similarly, X ′ represents a multiset consisting
entirely of group facts. When denoting the union of XA and
X ′ we will write XX ′ whenever the agent A is clear from
the context.

The distinction between private/secret and public/group
has the structure of a simple tree. There is a separate High
label for each of the participants and there is a single Low
label as illustrated by the following figure:

l
l

l
l

l
ll

,
,

,
,

,
,,.

Low

HighA1 HighAi HighAn

Figure 1. Security Levels.

A state, or configuration, of the system is now a multiset
of group and private facts. Each agent thus only has partial
knowledge of the global state. With this interpretation it is
only natural that an agent can act based only on facts that it
knows. For this reason, we restrict the enabling substate to
contain private data owned by at most one agent. Similarly,

4

the resulting substate will contain private data of at most one
agent. Moreover, the agent who owns the private data in the
enabling and resulting substates must be the same agent.
We choose to denote a transition by XX ′ →A Y Y ′, where
each of X , X ′, Y , and Y ′ may be empty. The subscript A
on the arrow indicates that any private data which occurs
belongs to A. When a transition contains facts owned by
A we say it belongs to agent A. When it is clear from the
context who owns a transition we will sometimes drop the
subscript and write XX ′ → Y Y ′. We use R to denote a set
of actions.

These transitions are local, in the sense that they only im-
mediately depend on and affect data known locally by any
one agent. Notice that the transitions themselves become
private. For example, a transition of the form X ′ →A Y ′

might represent a private algorithm applied to group data.
Although other agents can see the input and output of the
algorithm, they cannot perform the transformation on their
own because they do not know the algorithm.

As before, an action r : XX ′ →A Y Y ′ is applicable
in a state W if W = V XX ′ for some multiset of facts
V . We say that the state W enables the transition r. The
result of applying the action is a state U = V Y Y ′. We
use the notation W BR U to mean that there is an action in
R which can be applied to the state W to transform it into
the state U . In particular, W Br U means that the action
r performs the transition. We let B+

R and B∗
R denote the

transitive closure and the reflexive, transitive closure of BR

respectively. Henceforth we will assume that each agent has
actions which will copy group facts into private facts, such
as

P ′(t̄) →A P ′(t̄)PA(t̄).

Formally, a local state transition system T is a tuple
(Σ, I, RT), where Σ is a signature, I is a set of agents, and
RT is the set of (local) actions available to those agents.

Recall that, in the previous section, we had reason to
consider plans with partial goals. Here again, we will de-
velop a similar notion. We write W RT

Z to mean
that W BRT

ZU for some multiset of facts U . For ex-
ample with the action r : XX ′ →A Y Y ′, we find that
WXX ′ r Y Y ′, since WXX ′ Br WY Y ′. We define
 +

RT
and ∗

RT
to be the transitive closure and the reflex-

ive, transitive closure of RT
respectively. We say that the

partial configuration Z is reachable from state W with tran-
sition set RT if W ∗

RT
Z.

We choose to visualize plans in this setting as non-
branching trees (i.e., directed chains of nodes) with labels
on all edges and nodes.

Definition 3.1 A collaborative plan based on RT which (ex-
actly) leads from an initial state W to a (complete) goal
state Z is a labeled, non-branching tree whose labels sat-
isfy the following.

(i) Edges are labeled with actions from RT , and nodes are
labeled with states.

(ii) The label of each node enables the label of its outgoing
edge.

(iii) The label of the root is W .

(iv) The label of the leaf is Z.

Thus to say that there exists a collaborative plan lead-
ing exactly from W to Z is the same as saying W B∗

RT
Z.

As with action systems, we extend this definition to partial
goals as follows.

Definition 3.2 A collaborative plan based on RT which
leads from an initial state W to a partial goal Z is a
labeled, non-branching tree whose labels satisfy (i), (ii),
and (iii) above, and which also satisfies

(iv’) The label of the leaf is ZU for some multiset U .

Here again, to say that there exists a collaborative plan
leading from W to the partial goal Z, is equivalent to saying
W ∗

RT
Z. The plan itself, though, actually encodes the

sequence of actions used.
In order to have a notation for the label of a node, we

define, for each node w, its label with respect to an initial
configuration W inductively as follows. For the root w0,

valuew0(W) := W.

For any edge (v, w), labeled by XX ′ →A Y Y ′, if
valuev(W) is defined and valuev(W) = V XX ′ for some
V , then

valuew(W) := V Y Y ′.

Otherwise it is undefined.

Example 3.1

Consider a collaboration with two agents A and B. They
each have only one transition rule. The rules are

r1 : XAX ′ →A YAY ′ and

r2 : WBY ′ →B UBZ ′

which belong to agents A and B respectively.
Now R = {r1, r2}. If the initial state is S = XAX ′WB

then we can reach the state V = YAUBZ ′ as follows.

XAX ′WB Br1 YAY ′WB Br2 YAUBZ ′

We see that S B∗
R V , and also that S ∗

R Z ′. In this
example it is evident that collaboration is necessary in order
to reach the partial goal Z ′ from the initial system state S.

5

4. Privacy

When entering into a collaboration the participants must
balance the importance of reaching a common goal against
the importance of protecting their own information. If Al-
ice’s information is too sensitive, then she will be unwilling
to collaborate if she knows that every plan which reaches
the goal must leak that information. On the other hand,
maybe Alice considers the goal to be more important. She
still wants to keep her information secret if possible. How-
ever, if she knows the goal can only be reached by releasing
some sanitized version of her data, then she might be will-
ing to make the trade-off.

In order to express these notions in a formal way, we
must define what it means for secret information to leak.
While there may be a number of ways of representing an in-
formation leak, as a starting point here we choose the most
explicit form. Namely, if in the initial configuration of the
system, a term t occurs only in Alice’s private (High) pred-
icate (as PA(t, s̄) for any tuple of terms s̄), then we say that
t is learned by Bob if, in a later configuration, t occurs in
some public (Low) predicate, or a private (High) predicate
of Bob (i.e., either Q′(t, ū) or QB(t, ū) for some tuple of
terms ū).

The action PA(t) → P ′(t), where P ′ is a public predi-
cate, provides a simple way for releasing t. However, Bob
may be able to learn Alice’s private (High) information by
more indirect means by combining public (Low) informa-
tion she releases and his own private (High) data.

Example 4.1

Let Alice’s actions include

r1 : PA(15 A Pwd)SA(7 B Share)
→ PA(15 A Pwd)SA(7 B Share)P ′(8 A Share)

and let Bob’s actions include

r2 : QB(7 B Share)P ′(8 A Share) → QB(15 A Pwd)

When R = {r1, r2}, we find that

PA(15 A Pwd)SA(7 B Share)QB(7 B Share)
 ∗

R QB(15 A Pwd)

which means that Bob is able to learn Alice’s password,
15 A Pwd. Notice that, in this example, the password
never shows up in any public predicate. So if the above
system evolution happens in the presence of a third agent,
Charlie, then Charlie will not learn the password.

While this example was written as an illustration of se-
cret sharing, similar situations may occur without Alice in-
tending it to. In that case Alice’s private (High) informa-
tion is not protected from Bob. The following definition
says what it means for a system to protect an agent’s private
(High) information.

Definition 4.1 We say that a local state transition system
in initial configuration W , protects the privacy of agent A
if every term t which, in the initial configuration W , occurs
only in private (High) predicates of A, also occurs only in
private (High) predicates of A in any reachable configura-
tion.

That is to say, A’s privacy is protected if for every term
t, whenever t occurs only in A’s private (High) predicates
in the initial state, then no plan can ever lead to a fact of
the form Q′(t, ū) or QB(t, ū) for some ū. This is a global
condition on the space of all possible plans starting from a
given initial state.

While the classical planning problem asks only for a
plan which leads from the initial state to the goal state,
our situation demands more. We would like to find a plan
which leads from the initial state to the goal state, but
we also make sure that the transitition system protects
the privacy of all participants. We would like to ask the
following question:

The Collaborative Planning Problem with Privacy:
Given a local state transition system and given an initial

state W and a partial goal Z, does there exist a plan which
leads from W to Z, and does the system protect the privacy
of all agents?

This could be a hard question to answer in the general
case. In particular, if we put no restrictions on the form of
the actions, then we could grow the global state to an arbi-
trarily large size. The general case has the same complexity
as the reachability problem for Petri nets [8, 19]. Although
this is decidable [21], it overestimates the complexity of the
typical case.

It is possible to model a large class of collaborations us-
ing a fixed amount of total resources. We may assume that
the total number of facts is fixed at all times. This is en-
forced by limiting the transitions to be well-balanced [14].
A well-balanced transition is a transition which has the
same number of facts in the pre-condition and the post-
condition (including repetitions). In well-balanced local
state transition systems, the total number of facts present
in the global state remains constant.

While at first this may seem like a big restriction, in prac-
tice we are still able to model most scenarios in a natural
way. Consider each predicate in the language as a field in
some database. Then PA(t) can be interpreted as saying that

6

the field PA of A’s private database is occupied by t. Al-
though using well-balanced actions forces us to fix the num-
ber of fields of this database, there is no limit on the number
of fields we may choose. Informally, in well-balanced sys-
tems, agents only update their databases, while in general
systems they may create new fields.

To demonstrate this, we transform the example from
earlier in this section, which is not well-balanced, into a
well-balanced example. Assume that our language has a
special constant ∗. A predicate of the form PA(∗) can
be interpreted as saying that the field PA is empty. We
assume the privacy condition (Definition 4.1) does not refer
to ∗. Alice’s action may then be rewritten in the following
well-balanced form.

r1 : PA(15 A Pwd)SA(7 B Share)P ′(∗)
→ PA(15 A Pwd)SA(7 B Share)P ′(8 A Share)

Likewise, Bob’s action can be rewritten in a well-balanced
form.

r2 : QB(7 B Share)P ′(8 A Share)
→ QB(15 A Pwd)P ′(∗)

In this way, if the initial configuration has n predicates
(many of which may be of the form P (∗)) we can model
any non-balanced computation which does not grow the
global state to a size greater than n. In particular, using
well-balanced actions does not change the reachability of
states, as long they are reachable in a non-balanced system
evolution which limits the configuration size to n.

In Section 6 we will also refer to a slightly more gen-
eral case of non-lengthening local state transition systems,
for which in each action the number of facts in the post-
condition is at most the number of facts in the pre-condition.

4.1 Remarks

In modeling a real world collaboration the agents may
have a given protocol in mind which they would like to fol-
low. Each agent would then have actions which model their
part of the protocol. The actions and initial configuration
then determine a space of collaborative plans, or protocols,
which contains the protocol the agents had in mind. A so-
lution to the collaborative planning problem with privacy
does two things. First it determines that the entire space of
protocols satisfies Definition 4.1. Secondly, it picks a plan
which achieves the goal.

By determining that the system protects the pri-
vacy/secrecy of all agents, each agent has a guarantee that
even if the other participants don’t follow the plan, or if
they perform extra private (High) computations, the secrets
will not leak. This is because any deviation from the agreed

upon plan will be another plan which also satisfies Defini-
tion 4.1.

Because of the stateful nature of our formalism, we
are able to ask privacy/secrecy questions which have not
been studied extensively in the literature. Namely, can
the other agents learn Alice’s current private information?
To illustrate this point let us return, once again, to the
Example 4.1 above. Alice’s action may not only release
enough information to reveal her password, it may actually
change her password in the process. The action may be
changed to the following:

r1 : PA(15 A Pwd)SA(7 B Share)P ′(∗)
→ PA(21 A Pwd)SA(7 B Share)P ′(8 A Share)

Notice that Alice’s password has changed from 15 A Pwd
to 21 A Pwd.

Bob would still be able to learn Alice’s old password, but
he has no access to her current password. Her old password
is obsolete and will not help Bob learn any sensitive secrets.
The real danger arises when Bob is in possession of Alice’s
current private password. This may provide him access to
more sensitive data. Currently, Definition 4.1 does not ad-
dress this issue. For the moment we simply remark that
such notions are expressible in our formalism, and we leave
a more complete investigation of them for future work.

5. Foundation in Logic

In this section we present the logical foundation of our
approach. It is desirable to have such a logical foundation
because we are often able to gain new insight by thinking
in terms of a well established formalism. For example we
may be able to apply existing tools, which work with some
logical formalism, to the problem at hand. Here we demon-
strate a connection to a variation of linear logic known as
affine logic.

Linear logic (LL), which was introduced in [9], is a
resource-sensitive refinement of traditional logic. It is pre-
sented as a Gentzen style sequent calculus. A sequent of the
form Γ ` ∆ says roughly that the resources in the multiset Γ
can be used to produce the multiset ∆. Linear logic differs
in a number of ways from traditional logic, but most notably
it does not allow the rules of weakening or contraction.

The rule of contraction is given by

A,A, Γ ` ∆
A,Γ ` ∆

It says that if we can produce ∆ using Γ and two copies of
A, then we can also produce ∆ with Γ and one copy of A.
Weakening is the opposite rule and is given by

Γ ` ∆
A,Γ ` ∆

7

It says that if we can produce ∆ using Γ, the we can also
produce ∆ with Γ and A, for any A.

The effect of disallowing the contraction rule is that it
forces us to use each resource at most once. The effect of
disallowing the weakening rule is that it forces us to use
each resource at least once. This is why linear logic is pop-
ular when trying to model resource-sensitive systems. It al-
lows the available resources to grow and shrink, in contrast
to traditional logic in which the resources grow monotoni-
cally. Linear logic also provides a mechanism which allows
certain resources to be used any number of times. This will
be useful when we use logic to model actions.

At a lower level, linear logic splits the traditional connec-
tives defining conjunction and disjunction into two forms.
For example, the traditional conjunction ∧ is split into ⊗
(multiplicative conjunction) and & (additive conjunction).
A derivation of a ⊗ conjunction forbids any sharing of the
resources used to derive each conjunct. In contrast, a deriva-
tion of a & conjunction requires all resources to be shared.

Affine logic (AL) is the variation of linear logic which
allows weakening, but still disallows contraction. Thus, in
affine logic, we may use each resource either once or not
at all. Affine logic is therefore an appropriate logic to use
when we want to model the reachability of partial goals. It
allows us to work with the relevant resources in arbitrary
contexts.

There is a well-known correspondence between state
transition systems and linear logic. We extend this connec-
tion to one between local state transition systems and affine
logic. By encoding the objects of local state transition sys-
tems as logical formulas we are able to relate partial goal
reachability with derivability of certain Gentzen sequents
within affine logic.

Our translation of local state transition systems into
affine logic follows closely the translation of ordinary state
transition systems into linear logic. There is one notable dif-
ference which deserves mention here. If we want our trans-
lation to preserve all key elements of local state transition
systems, we must preserve the information which allows us
to determine which action is allowed to be used by which
participant. For this reason we translate actions into linear
implications with a special constant which acts as a “lock”,
as described below.

For a local state transition system T , multisets of facts
are encoded using the multiplicative conjunction, ⊗ (which
is commutative).

pSq =
⊗

S.

The empty multiset is encoded as the multiplicative unit.

p·q = 1.

Transition rules are encoded as linear implication. This
is where we use the “lock”. For each agent A we have a

constant symbol qA. We then encode transition rules using
linear implication as follows.

pXX ′ →A Y Y ′q = qA ⊗ pXX ′q (qA ⊗ pY Y ′q

This technique forces derivations in affine logic to contain
all the relevant information about which agent is applying
an action at a given point. Now, for the rule set RT we can
define

pRT q = {prq : r ∈ RT }.

Since locks of the form qA are part of the linear impli-
cations we must also include these constants as part of the
global configuration. If I is the set of participants of T , then
we define

pIq =
⊗

{qA : A ∈ I}.

We use a notion of provability which is based on an in-
tuitionistic version of affine logic where the sequents have
the form

Γ;∆ ` C

where ∆ is a linear context, Γ is an unrestricted context
in which the resources may be used as many times as
necessary, and C is a single formula (see [3]). The relevant
rules of affine logic are presented in the appendix. Under
our encoding of local state transition systems we are able
to achieve the following results.

Theorem 5.1 (Soundness) For every pair of states W , Z,
and every rule set RT defining a participant set I , if
W ∗

RT
Z then pRT q; pIq⊗ pWq ` pIq⊗ pZq is deriv-

able in affine logic.

Proof Outline. The proof is by induction on the length of
the transition chain. The base case is trivial. To prove the
induction step, it suffices to prove that if W r Z then
prq; pIq⊗ pWq ` pIq⊗pZq is derivable in affine logic.
This is done by bringing prq into the linear context using
the clone rule, and then isolating the antecedent using the
(-` rule. The remaining rules help in reducing the result
to logical axioms.

Theorem 5.2 (Completeness) For every pair of states W ,
Z and every rule set RT defining a paricipant set I , if
pRT q; pIq⊗ pWq ` pIq⊗ pZq is derivable in affine logic
then W ∗

RT
Z.

Proof Outline. This proof relies on the fact that we
are able to transform an arbitrary deduction in affine
logic of pRT q; pIq⊗ pWq ` pIq⊗ pZq into a normal
form similar to the form which results in the proof of
soundness [2, 3, 17]. When this is done, we can then take
the actions which correspond to the linear implications
used in the (-` rules. By listing them from the root of

8

the derivation upwards, we create the desired transition
sequence.

The above theorems relate the existence of a plan to
derivability in pure affine logic. It is also possible to trans-
late local state transition systems into affine logic theories.
Namely, for every action of the form X →A Y we include
a new axiom of the form qA⊗X ` qA⊗Y . The set of axioms
of a theory T is denoted by AxT . Theories with axioms of
this form are called (pure) Horn theories.

It can be easily seen that finite Horn theories can be faith-
fully represented in the formalism above, by listing the non-
logical axioms, AxT, in the unrestricted context, Γ.

Under this interpretation, the existence of a plan leading
from an initial state W to an exact goal Z can be shown to
be equivalent to derivability of the sequent pIq ⊗ W ` Z
in the corresponding Horn LL-theory. Also, pIq⊗W ` Z
is derivable in the corresponding AL-theory if and only if
pIq⊗W ` Z⊗V is derivable in the LL-theory for some
V (see [14]).

The privacy condition discussed in Section 4 requires
that for every term t which, in the initial configuration W ,
occurs only in private predicates of A, no plan can lead from
W to a fact of the form QB(t, ū) or Q′(t, ū). This is equiv-
alent to the requirement that

pIq⊗W ` ∃y1, . . . ,∃ynQB(t, y1, . . . , yn) and

pIq⊗W ` ∃z1, . . . ,∃znQ′(t, z1, . . . , zn)

are not provable in the AL-theory corresponding to the
given system. This is because of the so called existence
property of linear and affine logics which says that the se-
quents of this form are provable only by instantiating the
existential quantifiers [9].

6. Complexity

6.1. Lower PSPACE Bounds

We start with the simulation of non-deterministic Turing
machines.

Theorem 6.1 Any non-deterministic Turing machine M
that accepts in space n can be faithfully represented within
well-balanced local state transition systems.

Proof. Let M be a non-deterministic machine that accepts
in space n.
Without loss of generality, we assume the following:

(a) M has only one tape, which is one-way infinite to the
right. The leftmost cell (numbered by 0) contains the
marker $ unerased.

(b) Initially, an input string, say x1x2..xn, is written in
cells 1, 2,..,n on the tape. In addition, a special marker #
is written in the (n+1)-th cell.

$ x1 x2 · · · xn # . . .

(c) The program of M contains no instruction that could
erase either $ or #. There is no instruction that could
move the head of M either to the right when M scans
symbol #, or to the left when M scans symbol $. As
a result, M acts in the space between the two unerased
markers.

(d) Finally, M has only one accepting state, and, moreover,
all accepting configurations in space n are of one and
the same form.

For each n, we design a local state transition system Tn

(with a single agent A) as follows. We introduce the fol-
lowing 0-ary predicates (propositions), which are assumed
to be private predicates of A:

(a) Ri,ξ stands for “the i-th cell contains symbol ξ”,
here i=0, 1, .., n+1, ξ is a symbol of the tape alphabet
of M ,

(b) Sj,q means “the j-th cell is scanned by M in state q”,
here j =0, 1, .., n+1, q is a state of M .

Given an instantaneous description (configuration) of M in
space n - that M scans j-th cell in state q, when a string
ξ0ξ1ξ2..ξi..ξnξn+1 is written left-justified on the otherwise
blank tape, we will represent it by a configuration of Tn of
the form

Sj,qR0,ξ0R1,ξ1R2,ξ2 · · ·Rn,ξnRn+1,ξn+1 . (1)

Necessarily, ξ0 = $, and ξn+1 = #.
Each of the instructions of M , qξ→q′ηD:

“if in state q looking at symbol ξ, replace it by η,
move the tape head one cell in direction D along
the tape, and go into state q′”,

is specified by the set of n+2 actions of the form,
i=0, 1, .., n+1 :

Si,qRi,ξ →A SiD,q′Ri,η, (2)

where iD := i+1 if D is right, and iD := i−1 if D is
left, and iD := i, otherwise.
(Neither iright = n+2, nor ileft = −1 can occur.)

We denote the set of all these actions by RTn
.

Lemma 6.1 Given an input string x1x2..xn of length n,
let Wn be a configuration of Tn of the form (1), which
represents the initial configuration of M with the input

9

string x1x2..xn, and let Zn be a configuration of Tn of
the form (1), which represents the unique accepting config-
uration of M of length n.
The following propositions are pairwise equivalent:

(a) The input string x1x2..xn is accepted by M .

(b) Wn B∗
RTn

Zn

(c) Wn ∗
RTn

Zn

(d) There exists a finite plan based on RTn that (exactly)
leads from Wn to Zn.

Proof. Our encoding proceeds in a straight course, so
that given any successful non-deterministic computation in
space n that leads from the initial configuration represented
by Wn to the accepting configuration represented by Zn we
can rewrite it as a sequence of actions from RTn

leading
from Wn to Zn. This is done simply by writing (in or-
der) the actions from RTn which correspond to the transi-
tions used in the successful computation. This shows that
Wn B∗

RTn
Zn. Hence (a) implies (b). Item (c) follows

from (b) by the definitions, and we noted earlier that (d)
and (b) are equivalent.

The most complicated direction is that such a straight-
forward encoding is faithful. Suppose that Wn ∗

RTn
Zn.

Then, for some V1 we have Wn B∗
RTn

ZnV1. That is, there
is a finite plan P based on RTn that exactly leads from Wn

to ZnV1.
Since each of the actions (2) is well-balanced, and the

number of facts in both Wn and Zn is just the same n+3,
this V1 must be empty, which means that for the leaf ` in P ,
the following holds:

value`(Wn) = Zn.

Hence Wn B∗
RTn

Zn, and so (c) implies (b).
On the other hand, because of the specific form of our

actions (2) any valuev(Wn) in P is of the form (1), and,
hence, represents a configuration of M in space n.

Passing through this P from its terminal vertex to its
root v0, we prove that whatever vertex v we take, there is a
successful non-deterministic computation performed by M
leading from the configuration represented by valuev(Wn)
to the accepting configuration represented by Zn.

In particular, since valuev0(Wn) = Wn, we can con-
clude that the given input string x1x2..xn is accepted by M ,
and so (b) implies (a).

Comment 6.1 The signature of Tn consists only of O(n)
0-ary predicate symbols. The number of the constants in-
voked is zero.

Comment 6.2 If we confine ourselves both to a fixed num-
ber of predicate symbols and to a fixed number of constants,

Theorem 6.1 fails because of the polytime upper bound of
Corollary 6.4.

Nevertheless, we get PSPACE-hardness also in the op-
posite end of the “scale” with a fixed number of predicate
symbols and an unbounded number of constants.

Theorem 6.2 Any non-deterministic Turing machine M
that accepts in space n can be faithfully represented in well-
balanced local state transition systems with a fixed number
of unary predicates.

Proof. For each n, we will design a local state transition
system T ′

n (with a single agent A) by modifying the con-
struction of Theorem 6.1 as follows.
Assume a list of constants:

c0, c1, c2, . . . , cn, cn+1.

We introduce the following unary predicate symbols, which
are assumed to be private predicates of A:

(a) R̂ξ, for every ξ from the tape alphabet of M .

The intended meaning of R̂ξ is:

R̂ξ(ci) = Ri,ξ.

(b) Ŝq, for every q from the set of states of M .

The intended meaning of Ŝq is:

Ŝq(cj) = Sj,q.

Given an instantaneous description (configuration) of M in
space n - that M scans j-th cell in state q, when a string
ξ0ξ1ξ2..ξi..ξnξn+1 is written left-justified on the otherwise
blank tape, now it is represented as (cf. (1)):

Ŝq(cj)R̂ξ0(c0)R̂ξ1(c1) · · · R̂ξn
(cn)R̂ξn+1(cn+1). (3)

Each of the actions of the form (2) is rewritten as:

Ŝq(ci)R̂ξ(ci) →A Ŝq′(ciD
)R̂η(ci). (4)

The faithfulness of the modified encoding is established by

Lemma 6.2 Given an input string x1x2..xn of length n,
let Wn be a configuration of T ′

n of the form (3) that repre-
sents the initial configuration of M with the input string
x1x2..xn, and let Zn be a configuration of T ′

n of the
form (3) that represents the unique accepting configuration
of M of length n.
The following propositions are pairwise equivalent:

(a) The input string x1x2..xn is accepted by M .

(b) Wn B∗
RT ′

n

Zn

10

(c) Wn ∗
RT ′

n

Zn

(d) There exists a finite plan based on RT ′
n

that (exactly)
leads from Wn to Zn.

Proof. The proof mimics exactly the proof of Lemma 6.1.

Corollary 6.1 The planning problem remains
PSPACE-hard even for local state transition systems
where a finite set of (unary) predicate symbols is fixed in
advance, but there is no limitation for their finite domains.

Corollary 6.2 Any non-deterministic Turing machine M
that accepts in space n can be faithfully represented in well-
balanced local state transition systems, as well as, within
well-balanced local state transition systems with a fixed
number of unary predicates.

Corollary 6.3 The collaborative planning problem with
privacy is PSPACE-hard.

Proof. The hardness is already obtained in the single agent
case where the privacy condition is vacuously true.

6.2. Upper Bounds

Lemma 6.3 Given a local state transition system T over a
finite signature Σ,

(i) let ST be the total number of facts in signature Σ, and

(ii) let LT (m) denote the total number of configurations
in signature Σ whose number of facts (including repe-
titions) is bounded by m.

Then

(a) ST ≤ (J ·Da), where:

(a1) J is the total number of predicate symbols in sig-
nature Σ,

(a2) a is an upper bound of their arity, and
(a3) D is the total number of constants in signature Σ.

(b) For any m:

LT (m) ≤
(

m + ST

m

)
=

(m + ST)!
m! · (ST)!

≤

≤ min{(ST + 1)m, (m + 1)ST }.

Corollary 6.4 (PTIME for a fixed signature) Let Σ be a
fixed finite signature (consisting of a finite number of predi-
cate symbols with their arity and of a finite number of con-
stants).
Then there is an algorithm βΣ applicable to the following
pair of inputs:

(i) to any local state transition system T with signature Σ
such that each of the actions in RT is non-lengthening,
and RT is decidable in polytime by a program ρ,

(ii) and to any configurations W and Z,

which:

(a) determines whether there is a plan based on RT , lead-
ing from W to the partial goal Z, and

(b) if the answer is positive, makes such a plan (of the min-
imal length), and

(c) runs in polynomial time with respect to the two
parameters:

(c1) the binary length of a description of the program ρ

(c2) and m, the least upper bound of the number of
facts in each of W and Z.

Proof. Since the number of configurations is bounded
by LT (m), the number of closed actions is bounded by
LT (m)2. The length of any successful computation is
easily seen to be at most LT (m) since we should never
have to repeat a configuration during a computation. We
can generate each axiom in TIMEρ(LT (m)), which is a
polynomial in LT (m). Putting these together, the total
time is O(TIMEρ(LT (m)) × LT (m)2). By Lemma 6.3,
LT (m) ≤ (m + 1)ST . Since we have a fixed finite signa-
ture, ST is a fixed constant. Thus the total time necessary
is polynomial.

Corollary 6.5 For a fixed signature, the collaborative
planning problem with privacy can be solved in polynomial
time.

Proof. By Corollary 6.4, we can determine the existence of
a plan leading to the partial goal Z in polynomial time. We
must also determine the non-existence of a plan leading to
each fact of the form Q′(t, ū) or QB(t, ū), whose presence
would violate the security condition. There are a fixed
number of such facts (bounded by ST), and each can be
checked in polynomial time.

The next theorem shows a PSPACE upper bound for de-
ciding the existence of a plan which leads to any of a finite
set of partial goals. It would be sufficient to consider a sin-
gle partial goal to determine the existence of a plan, but
this more general case will be useful later when deciding
whether or not the privacy condition is violated.

Theorem 6.3 (PSPACE) There is an algorithm α′ applica-
ble to the following pair of inputs:

(i) any local state transition system T over a finite sig-
nature such that each of the actions in RT is non-
lengthening, and RT is decidable by a program ρ in
pspace, and

11

(ii) any configurations W,Z1, .., Zk,

which:

(a) determines whether there is a plan based on RT leading
from W to any of the partial goals Z1, .., Zk,

(b) and runs in polynomial space with respect to the
two parameters:

(b1) the binary length of a description of the program ρ

(b2) and m·log2 ST , where m is the least upper bound
of the number of facts in each of W,Z1, .., Zk.

(It presupposes that k ≤ LT (m).)

Proof. The main ideas are as follows.
First, we show that the decision problem under con-

sideration belongs to PSPACE by means of the following
npspace construction.

Let Z0 be the set which consists of all configurations H
of the form ZjV , where 1≤j≤k and V is a state such that
the number of facts of ZjV is bounded by m. This is the
set of goals with at most m facts whose exact reachability
implies the reachability of some partial goal Zj .

We begin with W0 := W .
For any t, if Wt is not yet a member of Z0, then we ob-

tain Wt+1 by guessing an action XX ′ →A Y Y ′ which is
applicable in configuration Wt. Then Wt+1 is the configu-
ration which results from applying the action to Wt, and we
replace the old Wt by the new Wt+1.

Let us now determine the space required for each t-th
step. We need to record the configuration Wt. Since the
total number of configurations is bounded by LT (m), we
can do this in log2(LT (m)) space. By Lemma 6.3, we get
the following inequalities:

log2 LT (m) ≤ log2(ST + 1)m ≤ 2m log2(ST)

Similarly, the action which is guessed can be stored on
O(m log2(ST)) space. Each axiom is generated by the pro-
gram ρ in SPACEρ(O(m log2(ST))), which is polynomial in
m log2(ST), since ρ runs in polynomial space. Thus the to-
tal space required for each step is polynomial in m log2(ST)
and the binary length of the description of ρ.

We can show that W ∗
RT

Zj for some 1≤j≤k iff
there is a sequence of at most LT (m) guesses that ends
in Z0.

The technique of Savitch’s theorem [12] shows how to
perform this procedure in pspace.

To generate the plan that is hidden inside this con-
struction, we modify the construction so that, each
XX ′ →A Y Y ′ from the plan will be eventually kept on
additional O(m·log2 ST) space.

As a corollary, we get that the collaborative planning
problem with privacy is in PSPACE.

Corollary 6.6 There is an algorithm α′ applicable to the
following triple of inputs:

(i) any local state transition system T over a finite sig-
nature such that each of the actions in RT is non-
lengthening, and RT is decidable by a program ρ in
pspace, and

(ii) any configurations W and Z, and

(iii) any finite list tAi of terms owned by A (to be protected
from others).

which:

(a) determines whether, for each A, tAi are protected from
all other Bs,

(b) determines whether there is a plan based on RT leading
from W to the partial goal Z,

(c) and runs in polynomial space with respect to the
two parameters:

(c1) the binary length of a description of the program ρ

(c2) and m·log2 ST , where m is the least upper bound
of the number of facts in each of W and Z,

Proof. By Theorem 6.3, part (b) can be checked in poly-
nomial space. Since PSPACE = COPSPACE, we can check
part (a) for each list tA1 , .., tAk in polynomial space (again by
Theorem 6.3).

7. Related Work

The formalism presented in this paper has some simi-
larities to other work. The Multiset Rewriting formalism
(MSR) presented in [5] and [3] is a notable example of the
use of state transition systems. One key difference with our
work is in the treatment of the adversary. In the context of
collaboration each participant views all the others as poten-
tial colluding adversaries. In particular, the representation
of security protocols in the MSR formalism [5] assumes that
honest participants act deterministically and are computa-
tionally very limited, while the adversary has unbounded
memory and can act nondeterministically. Here, each par-
ticipant can make use of nondeterminism, and we place no
fixed bound on the memory of the participants.

The work in [7] and [6] uses similar techniques to pro-
vide an abstract model for distributed access control. While
access control and our privacy concerns share some simi-
larities, our focus is on the interaction between the release
and protection of resources in a general collaborative set-
ting. Nevertheless, it would be interesting to investigate a
more precise relationship between our approach and the use
of linear logic in [7] and [6].

The work in [24] presents rewriting systems by means
of conditional rewriting logic. This logic is proposed as a

12

general model for concurrent systems. It presents Maude,
a programming language which helps to unify concurrent
programming with functional and object-oriented program-
ming.

Many models of information flow provide an explicit
mechanism for intentionally downgrading or declassifying
information. The work in [31] and [25] addresses non-
interference in such a setting. They consider the possibility
of abusing explicit declassification mechanisms to provide
for the unintentional leak of information.

There has been work on specific forms of collaboration.
For example [13] and [29] consider scientific data sharing,
and [30] considers the controlled release of medical infor-
mation. These approaches are not as abstract as ours and
they focus more on the implementation of local policies.

8. Conclusion and Future Work

In this paper we have presented an abstract model for
collaboration which addresses the inherently competing no-
tions of protecting and releasing resources. We have dis-
cussed what it means to generate a collaborative plan and
maintain the participants’ privacy/secrecy of information or
resources. We have demonstrated the logical foundation of
our approach with a translation into affine logic which re-
lates the existence of a collaborative plan to derivability. We
have shown that deciding the existence of a well-balanced
collaborative plan which protects the privacy/secrecy of all
participants is PSPACE-complete. We saw that by fixing in
advance the number of constants and predicates, the collab-
orative planning problem with privacy/secrecy is solvable
in polynomial time.

Currently, we have considered local state transition sys-
tems with constants and predicates. In the future we would
like to consider a richer language of functional terms and
appropriate ways of bounding their complexity. We would
also like to consider the case with existential quantifiers.
This would allow the participants to create new values as
in [5]. We would like to investigate the use of the linear
logic connective ⊕ to model branching nondeterminism re-
sulting from actions with nondeterministic effects. We also
believe our model provides the ability to trace the leak of
information back to its point of origin. This would provide
a sort of auditing mechanism. We would like to investigate
the relationship to non-interference and information flow in
this collaborative setting. In addition, we have assumed a
threat model which isolates the participants from outside
intruders. Adjusting this model to consider a more general
setting is desirable.

While we noted in Section 4.1 that our formalism is able
to distinguish between obsolete secrets and current secrets,
we would like to complete a more thorough investigation
of how this may be used. In addition, our system cur-

rently only distinguishes between private (High) and pub-
lic (Low). In practice one might use a more complicated
structure such as a partially ordered set. We would also like
to explore the use of some sort of utility functions which
weigh the relative importance of information release and
protection. They can guide the agents’ decisions on whether
or not to release information. This could lead us to a more
fine-grained definition of the protection of privacy.

Acknowledgements

Thanks to Zack Ives, Pat Lincoln, Ralph Wachter and
Steve Zdancewic and other members of the Penn Computer
Security Seminar for their useful suggestions and com-
ments.

References

[1] W. Bibel. A deductive solution for plan generation. New
Generation Computing, 4(2):115–132, 1986.

[2] I. Cervesato, N. Durgin, M. Kanovich, and A. Scedrov. In-
terpreting strands in linear logic. In H. Veith, N. Heintze,
and E. Clark, editors, 2000 Workshop on Formal Methods
and Computer Security –FMCS’00, Chicago, IL, 2000.

[3] I. Cervesato and A. Scedrov. Relating state-based
and process-based concurrency through linear logic. In
R. de Queiroz, editor, Thirteenth Workshop on Logic, Lan-
guage, Information and Computation — WoLLIC’06, pages
145–176, Stanford, CA, 18–21 July 2006. Elsevier ENTCS
165.

[4] D. Chapman. Planning for conjunctive goals. Artificial In-
telligence, 32(3):333–377, 1987.

[5] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Multiset
rewriting and the complexity of bounded security protocols.
Journal of Computer Security, 12(2):247–311, 2004.

[6] D. Garg, L. Bauer, K. D. Bowers, F. Pfenning, and M. K.
Reiter. A linear logic of authorization and knowledge.
In Proceedings of the 11th European Symposium on Re-
search in Computer Science (ESORICS’06), volume 4189
of Springer Lecture Notes in Computer Science, pages 297–
312. Springer-Verlag, 2006.

[7] D. Garg and F. Pfenning. Non-interference in constructive
authorization logic. In Proc. of the IEEE Computer Security
Foundations Workshop (CSFW), pages 283–296, 2006.

[8] V. Gehlot and C. Gunter. Normal process representatives.
In Proc. of the Fifth Annual IEEE Symposium on Logic in
Computer Science, pages 200–207, Philadelphia, PA, 1990.

[9] J.-Y. Girard. Linear logic. Theoretical Computer Science,
50(1):1–102, 1987.

[10] J.-Y. Girard. Linear logic: Its syntax and semantics. In J.-
Y. Girard, Y. Lafont, and L. Regnier, editors, Advances in
Linear Logic, volume 222 of London Mathematical Soci-
ety Lecutre Notes, pages 1–42. Cambridge University Press,
1995.

[11] J. A. Goguen and J. Meseguer. Security policies and security
models. In IEEE Symposium on Security and Privacy, pages
11–20, 1982.

13

[12] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduc-
tion to Automata Theory, Languages, and Computation.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2001.

[13] Z. G. Ives, N. Khandelwal, A. Kapur, and M. Cakir.
ORCHESTRA: Rapid, collaborative sharing of dynamic
data. In Conference on Innovative Data Systems Research
(CIDR), pages 107–118, 2005.

[14] M. Kanovich and J. Vauzeilles. The classical AI planning
problems in the mirror of Horn linear logic: semantics, ex-
pressibility, complexity. Mathematical Structures in Com-
puter Science, 11(6):689–716, 2001.

[15] M. I. Kanovich. Horn programming in linear logic is NP-
complete. In Proc. 7-th Annual IEEE Syposium on Logic in
Computer Science, Santa Cruz, pages 200–210, 1992.

[16] M. I. Kanovich. The complexity of Horn fragments of linear
logic. Annals of Pure and Applied Logic, 69:195–241, 1994.

[17] M. I. Kanovich. Linear logic as a logic of computations.
Annals of Pure and Applied Logic, 67:183–212, 1994.

[18] M. I. Kanovich. The direct simulation of Minsky machines
in linear logic. In J.-Y. Girard, Y. Lafont, and L. Regnier,
editors, Advances in Linear Logic, volume 222 of London
Mathematical Society Lecture Notes, pages 123–145, 1995.

[19] M. I. Kanovich. Petri nets, Horn programs, linear logic and
vector games. Annals of Pure and Applied Logic, 75(1-
2):107–135, 1995.

[20] M. Masseron, C. Tollu, and J. Vauzeilles. Generating plans
in linear logic I: Actions as proofs. Theoretical Computer
Science, 113(2):349–370, 1993.

[21] E. W. Mayr. An algorithm for the general Petri net reacha-
bility problem. SIAM J. Comput., 13(3):441–460, 1984.

[22] D. McDermott and J. Hendler. Planning: What it is, what
it could be, An introduction to the special issue on planning
and scheduling. Artificial Intelligence, 76:1–16, 1995.

[23] J. McLean. Security models. In J. Marciniak, editor, En-
cyclopedia of Software Engineering. John Wiley & Sons,
1994.

[24] J. Meseguer. Conditional rewriting logic as a unified model
of concurrency. In Selected papers of the Second Workshop
on Concurrency and compositionality, pages 73–155, Essex,
UK, 1992. Elsevier Science Publishers Ltd.

[25] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing
robust declassification and qualified robustness. Journal of
Computer Security, 14(2):157–196, 2006. Extended abstract
in CSFW pages 172-186, 2004.

[26] N. J. Nilsson. Principles of Artificial Intelligence. Springer,
Berlin, 1980.

[27] J. C. Reynolds. Syntactic control of interference. In Sym-
posium on Principles of Programming Languages (POPL),
pages 39–46, 1978.

[28] A. Scedrov. Linear logic and computation: A survey. In
H. Schwichtenberg, editor, Proof and Computation, Pro-
ceedings Marktoberdorf Summer School 1993, pages 281–
298. NATO Advanced Science Institutes, Series F, Springer-
Verlag, Berlin, 1994.

[29] N. E. Taylor and Z. G. Ives. Reconciling while tolerating dis-
agreement in collaborative data sharing. In ACM SIGMOD
Conference on Management of Data, pages 13–24, 2006.

[30] G. Wiederhold, M. Bilello, V. Sarathy, and X. Qian. Pro-
tecting collaboration. In Proc. 19th NIST-NCSC National
Information Systems Security Conference, pages 561–569,
1996.

[31] S. Zdancewic and A. C. Myers. Robust declassification. In
Proc. 14th IEEE Computer Securtiy Foundations Workshop
(CSFW), pages 15–23, 2001.

A. Some Rules of Affine Logic

Structural rules:

Γ;A1, . . . , An ` Ai
id

Γ, A;∆, A ` C

Γ, A;∆ ` C
clone

Cut rules

Γ;∆1 ` A Γ;∆2, A ` C

Γ;∆1,∆2 ` C
cut

Γ; · ` A Γ, A;∆ ` C

Γ;∆ ` C
cut!

Left rules

Γ;∆ ` C

Γ;∆,1 ` C
1-`

Γ;∆, A1, A2 ` C

Γ;∆, A1 ⊗A2 ` C
⊗ -`

Γ;∆1 ` A Γ;∆2, B ` C

Γ;∆1,∆2, A(B ` C
(-`

Γ;∆, A ` C

Γ;∆,∃x.A ` C
∃-`

Right rules

Γ; · ` 1
1-r

Γ;∆1 ` C1 Γ;∆2 ` C2

Γ;∆1,∆2 ` C1 ⊗ C2
⊗ -r

Γ;∆ ` [t/x]C
Γ;∆ ` ∃x.C

∃-r

14

