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Abstract
Collaboration among organizations or individuals is common. While these participants

are often unwilling to share all their information with each other, some information sharing
is unavoidable when achieving a common goal. The need to share information and the desire
to keep it confidential are two competing notions which affect the outcome of a collabora-
tion. This paper proposes a formal model of collaboration which addresses confidentiality
concerns. We draw on the notion of a plan which originates in the AI literature. We use data
confidentiality policies to assess confidentiality in transition systems whose actions have an
equal number of predicates in their pre- and post-conditions. Under two natural notions of
policy compliance, we show that it is PSPACE-complete to schedule a plan leading from
a given initial state to a desired goal state while simultaneously deciding compliance with
respect to the agents’ policies.

1 Introduction

With information and resources becoming more distributed interaction with external services is
becoming more important. There is a lot of software available which is designed to foster col-
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laboration through communication, resource sharing and data sharing. Collaborating agents are
usually viewed to have a cooperative relationship in which they share a common goal. A com-
mon example can be found in companies which have a variety of departments working together
to bring a product to market. In such situations confidentiality among departments is not always
an obvious concern. However, just because parties are willing to collaborate does not mean they
are ready to share all their information or resources. The distribution of health records is a good
example.

Personal medical information can be quite sensitive. Hospitals take great care to ensure that
information is shared and protected appropriately. There are quite detailed laws which specify
exactly how a hospital may or may not distribute medical records. Some level of sharing is
unavoidable. In order for a procedure to be covered by a patient’s insurance company, the hos-
pital must tell the insurance company what procedures were performed, as well as the diagnosis.
Only then can the insurance company decide if it will cover the cost. But the insurance com-
pany should not be given other private information about the patient. Hospitals may also provide
aggregate data on patients to students for educational purposes. This aggregate data should be
appropriately sanitized for release to students. The same information, however, might not be
acceptable for release to the general public.

When doing scientific research, researchers must find a balance between sharing too much
information and not enough. On one hand, a principal goal of research is to obtain and publish
results. On the other hand, if researchers provide their raw data to others too soon, another group
may announce the results first. Data sharing is prominent in the fields of comparative genomics
and systems biology where the focus is on integrating and analyzing large amounts of dynamic
and growing biological data (see [?, ?]). Scientific data sharing also has the converse problem.
Scientists often rely on data from outside sources. The choice of whether or not to use outside
data depends on the source of the data. The choice also depends on whether the outside data
is consistent with the local confidential data. Research groups may have informal policies, or
practices that determine when they are willing to incorporate outside data into their results.

Successful collaboration depends upon the proper balance between the protection and release
of information or resources. In particular, collaboration is often not possible without some form
of release of resources or information. The agents involved typically have some type of (possibly
informal) confidentiality policy describing which types of data are allowed to be seen by which
agents. The agents have an idea of which information releases are acceptable and which are not.
Additionally, there may be external confidentiality policies imposed by law. Our focus is not
on the conditions under which information is released, but rather on who is capable of seeing
information which they should not see. The main confidentiality concern is that data might
become available or visible to an agent who is prohibited from viewing it according to one of the
policies.

In this paper we present a model of collaborative systems at an abstract level. We draw on
previous work in planning and state transition systems and their connection to linear logic. We
use local state transition systems in which we model local or confidential data through the use of
a syntactic convention on predicate symbols. The global system state can then be thought of as
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a collection of local states (comprised of confidential or High facts) together with some shared
group state (comprised of group/public or Low facts). Indeed there are several High labels, with
one for each agent and a single Low label. The confidential or local facts are those which are only
visible and accessible to the local agent, although another agent may have another copy stored
in their local state. We force the global state to change incrementally through local transitions
that affect at most one local state at a time. A collaborative plan is then a sequence of transitions
which takes the global state from some initial configuration to an agreed goal configuration. In
fact, there may be many configurations that satisfy some goal condition.

We consider systems with well-balanced transitions which have the same number of facts
in both the pre-conditions and the post-conditions. Intuitively, this means that each agent has
a confidential (High) database, and there is a shared group (Low) database. The total number
of fields in these databases is fixed, and the agents update the fields instead of creating new
ones. Under this restriction, we find the complexity of scheduling a collaborative plan subject to
certain confidentiality conditions. Our focus is on the interplay between confidentiality, or policy
compliance, and goal reachability. Can the agents achieve their common goal while having some
confidentiality guarantees?

We formulate two notions of compliance with confidentiality policies. The first notion, that
of system compliance, requires that no execution of the system can violate any of the agents’
confidentiality policies. The second notion, plan compliance, only requires a single execution,
or plan, to be compliant with all the confidentiality policies. We show PSPACE-completeness of
the following two problems which correspond respectively to the two confidentiality notions:

(I) Given a local state transition system, a set of confidentiality policies, an initial configura-
tion, and a set of goal configurations, is the system compliant with the policies, and if so,
schedule a plan leading from the initial configuration to one of the goal configurations (if
one exists).

(II) Given a local state transition system, a set of confidentiality policies, an initial configura-
tion, and a set of goal configurations, schedule a compliant plan leading from the initial
configuration to one of the goal configurations (if one exists).

We also demonstrate the logical foundation of our approach in a variant of linear logic [?, ?].
While this is not necessary in determining the complexity of the planning problem, it relates our
approach to a number of similar formalisms which have had success in the past. On the one hand,
there is a wide literature on viewing the classical planning problem in logical settings [?, ?, ?, ?].
On the other hand, multiset rewriting formalisms have proved useful in the analysis of security
protocols [?, ?] as well as in the field of computation and concurrency [?, ?, ?, ?, ?, ?]. This
paper expands upon our preliminary report [?] with the addition of confidentiality policies and
full proofs of the theorems.

The paper is structured as follows. Section 2 recalls single agent action systems and the
classical planning problem. In section 3 we present state transition systems with multiple agents
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and an extension which accounts for private data. We define collaborative planning in this set-
ting. Section 4 discusses the relevant privacy properties. Logical foundation of our formalism is
presented in section 5. Section 6 considers the complexity of the planning problem with privacy.
We discuss related work in section 7. We present conclusions and future work in section 8.

2 Action Systems

A typical problem in Artificial Intelligence is that of a robot manipulating its environment in
order to achieve some desired configuration. The robot is an agent which has limited abilities to
sense and interact with its environment. The robot has at its disposal a set of actions which can
change the state of the environment. The planning problem is that of trying to find a sequence of
actions which will transform the environment from an initial state into a specified goal state.

These notions are formalized in action systems which specify how to describe the environ-
ment, what actions are available to the agent and how those actions affect the environment. The
environment is characterized by a finite set of objects and relationships between those objects.
Each action changes the relationships between the objects. Old relationships may be destroyed
while new ones are simultaneously created. Each action is enabled by certain relationships be-
tween the objects. This means that not every action can be applied in every configuration of the
environment.

To describe the environment we use a finite first order language without function symbols.
Specifically, we use a finite set of constants to represent the objects of the environment. A finite
set of predicates, will represent the possible relationships between the objects. A closed atomic
formula will be called a fact. We define a state of the environment to be a set of facts. To illustrate
the definitions we use an example common from the literature: the blocks world [?, ?, ?].

In this example there are three blocks represented by the constants a, b, and c. There are five
predicates with the following interpretations:

ONTABLE(x) : x is on the table,
ON(x, y) : x is on top of y,
CLEAR(x) : nothing is on top of x,
HOLDS(x) : the robot holds x,
HANDEMPTY : the robot’s hand is empty.

We can now represent the relative positions of the blocks on the table. One possible state of the
environment is the following:

{ONTABLE(a),ON(b, a),CLEAR(b),ONTABLE(c),CLEAR(c),HANDEMPTY}.

This represents the situation in which b is stacked on a, and c sits on the table with nothing on
top of it. We will typically use U, V,W and Z to represent states.
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We now need to describe how the environment changes from one state to another. This is
done through actions. Formally, an action is a map between states. Each action α is defined in
terms of pre- and post-conditions denoted pre(α) and post(α) respectively. The domain of α is
any state W in which pre(α) is a substate, (i.e. pre(α) ⊆ W ). If the state W is the domain of
α, we say that W enables α. The result of applying the action is to replace pre(α) with post(α)
in the state while leaving the rest of the state unchanged. We can thus represent the action as
pre(α) → post(α). The agent can choose nondeterministically to apply any action which is
enabled.

In our blocks world we have actions defined by the following conditions.

take(x): {HANDEMPTY,CLEAR(x),ONTABLE(x)} → {HOLDS(x)}
remove(x, y): {ON(x, y),HANDEMPTY,CLEAR(x)} → {HOLDS(x),CLEAR(y)}
stack(x, y): {HOLDS(x),CLEAR(y)} → {HANDEMPTY,CLEAR(x),ON(x, y)}
put(x): {HOLDS(x)} → {ONTABLE(x),CLEAR(x),HANDEMPTY}

The facts expressible in an action system determine a collection of possible states (viz., the
power set of the set of facts). We may have cause to view some states as inconsistent. For
example, consider the state {ON(a, b),ON(b, a)}. Under our interpretation of the predicates, this
state corresponds to blocks a and b being stacked on top of each other. Since this is physically
impossible we want to introduce a mechanism that restricts the set of states we are willing to
consider.

Let Σ be a subset of the states of an action system. These will be the states which we con-
sider consistent. We say that an action system is compatible with Σ if every action preserves
consistent states. Formally, for every state W ∈ Σ and for every action α we have

if pre(α) ⊆W then α(W ) ∈ Σ.

The planning problem is formulated in terms of an action system and set of states Σ which
is compatible with the action system. Before we formulate the problem we must define a plan.
A plan is a chain of actions. We say a plan leads from an initial state to a (complete) goal state
if the following all hold.

(i) The first action of the plan is enabled by the initial state.

(ii) The resulting state of each action enables the next action in the plan.

(iii) The resulting state of the final action is the goal state.

Often a goal will not describe the entire environment. The goal could simply be any state in
which block b is on block c. The position of a is irrelevant as long as it does not prohibit the goal
situation. To express this idea we say that a plan leads from an initial state to a partial goal state
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if (i) and (ii) hold, and in addition we have

(iii’) The partial goal state is a substate of the state which results from the final action.

The planning problem is the following. Given an action system, an initial stateW and partial
goal state Z, does there exist a plan which leads from W to the partial goal Z?

The term plan is suggestive of the fact that the agent is meant to work out a plan before
applying any actions. This is important because actions destroy old states. In many cases actions
may be reversible, but this is not necessarily so. If an agent applies an irreversible action it may
destroy its chances of reaching the goal. An abstract analysis before the agent starts performing
actions can prevent such missteps.

3 State Transition Systems

3.1 Multiset Rewriting

Planning may also be considered to be part of a larger paradigm of state transition systems. State
transition systems model concurrent computation by keeping track of a global state which is
manipulated by multiple agents. Each agent uses a set of transitions in order to change the global
state. By changing the state an agent may enable other agents to take further steps. We present
state transition systems as multiset rewriting systems.

At the lowest level, we have a signature Σ of predicate symbols P1, P2, . . ., and constant
symbols c1, c2, . . .. A fact is a ground, atomic predicate over multi-sorted terms. Facts have the
form P (t̄) where P is an n-ary predicate symbol and t̄ is an n-tuple of terms, each with its own
sort. A state, or configuration of the system is a finite multiset W of facts. The system evolves
over time by way of a set of transitions. These transitions specify a substate which is to be
rewritten as another substate. A transition will appear as X → X ′ where X and X ′ are multisets
of facts. We call X the enabling substate and X ′ the resulting substate of the transition. We will
use the convention that concatenation of multisets, such as WX , represents their multiset union.
The transition X → X ′ thus transforms the state WX into the state WX ′. It erases the multiset
X and replaces it with X ′.

We extend this notion of system evolution to that of reachability of a state Z from a state W .
Given a set R of transition rules, if there is a sequence of (0 or more) transitions from R which
transforms W into Z, then we say that Z is reachable from W using R.

Notice that these notions fit well with the classical ideas from planning. As discussed
in [?, ?], the environment state is now described by a multiset of facts instead of a set. Ac-
tions and transitions behave in the same fashion, creating new state information while destroying
old information. In fact, from now on we will use the terms action and transition interchange-
ably. State reachability corresponds to the existence of a plan which transforms the environment
from an initial situation to a goal situation.
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3.2 Local State Transition Systems

We now want to extend these notions to a situation where each agent has access to private data
which is inaccessible to all other agents. This requires us to extend the definitions a little. We
now make a distinction between private facts and facts which are accessible to the whole group.
For simplicity of exposition we restrict our terms to be constants and variables only (no function
symbols). If we allow function symbols up to a fixed bounded depth, then the results of this
paper continue to hold unchanged.

A signature Σ consists of predicate symbols with their arity, and many sorted constants and
variables. As above, a fact is a ground, atomic predicate, but now we differentiate between private
facts and group, or public facts using a syntactic convention. If a fact is private to participant
A, we annotate the predicate with a subscript as, PA(t̄). We call this a private fact, and we will
often say that agent A owns PA(t̄), or even A owns t̄. Group facts are annotated with a prime
marker as P ′(t̄). A participant is said to know a fact if it is a group fact or if that fact is owned
by the participant. We extend this notation to multisets of facts, so the multiset XA represents
a multiset of facts all of which are owned by participant A. Similarly, X ′ represents a multiset
consisting entirely of group facts. When denoting the union of XA and X ′ we will write XX ′

whenever the agent A is clear from the context.
The distinction between confidential and public/group has the structure of a simple tree.

There is one High label for each of the participants and there is a single Low label. One could
easily imagine different structures to guide communication, such as having levels for certain
subgroups of participants. In this work however, we only consider the simple structure illustrated
in Figure 1.

l
l

l
l

l
ll

,
,

,
,
,

,,. . . . . .

Low

HighA1 HighAi HighAn

Figure 1: The simple tree structure of privacy.

A state, or configuration, of the system is now a multiset of group and private facts. Each
agent thus only has partial knowledge of the global state. With this interpretation it is only natural
that an agent can act based only on facts that it knows. For this reason, we restrict the enabling
substate to contain private data owned by at most one agent. Similarly, the resulting substate
will contain private data of at most one agent. Moreover, the agent who owns the private data in
the enabling and resulting substates must be the same agent. We choose to denote a transition
by XX ′ →A Y Y

′, where each of X , X ′, Y , and Y ′ may be empty. The subscript A on the
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arrow indicates that any private data which occurs belongs to A. When a transition contains
facts owned by A we say it belongs to agent A. When it is clear from the context who owns a
transition we will sometimes drop the subscript and write XX ′ → Y Y ′. We use R to denote a
set of actions.

These transitions are local, in the sense that they only immediately depend on and affect
data known locally by any one agent. Notice that the transitions themselves become private. For
example, a transition of the formX ′ →A Y

′ might represent a private algorithm applied to group
data. Although other agents can see the input and output of the algorithm, they cannot perform
the transformation on their own because they do not know the algorithm.

As before, an action r : XX ′ →A Y Y
′ is applicable in a state W if W = V XX ′ for some

multiset of facts V . We say that the state W enables the transition r. The result of applying the
action is a state U = V Y Y ′. We use the notation W >R U to mean that there is an action in R
which can be applied to the stateW to transform it into the state U . In particular,W >r U means
that the action r performs the transition. We let>+

R and>∗R denote the transitive closure and the
reflexive, transitive closure of>R respectively. Henceforth we will assume that each agent has
actions which will copy group facts into private facts, such as

P ′(t̄)→A P
′(t̄)PA(t̄).

Formally, a local state transition system T is a tuple (Σ, I, RT ), where Σ is a signature, I is
a set of agents, and RT is the set of (local) actions available to those agents.

Recall that, in the previous section, we had reason to consider plans with partial goals.
Here again, we will develop a similar notion. We write W  RT Z to mean that W >RT ZU
for some multiset of facts U . For example with the action r : XX ′ →A Y Y

′, we find that
WXX ′  r Y Y

′, since WXX ′>r WY Y ′. We define +
RT

and ∗RT to be the transitive clo-
sure and the reflexive, transitive closure of RT respectively. We say that the partial configura-
tion Z is reachable from state W with transition set RT if W  ∗RT Z.

We choose to visualize plans in this setting as non-branching trees (i.e., directed chains of
nodes) with labels on all edges and nodes.

Definition 3.1 A collaborative plan based on RT which (exactly) leads from an initial state W
to a (complete) goal state Z is a labeled, non-branching tree whose labels satisfy the following.

(i) Edges are labeled with actions from RT , and nodes are labeled with states.

(ii) The label of each node enables the label of its outgoing edge.

(iii) The label of the root is W .

(iv) The label of the leaf is Z.

Thus to say that there exists a collaborative plan leading exactly from W to Z is the same as
saying W >∗RT Z. As with action systems, we extend this definition to partial goals as follows.
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Definition 3.2 A collaborative plan based on RT which leads from an initial state W to a partial
goal Z is a labeled, non-branching tree whose labels satisfy (i), (ii), and (iii) above, and which
also satisfies

(iv’) The label of the leaf is ZU for some multiset U .

Here again, to say that there exists a collaborative plan leading from W to the partial goal
Z, is equivalent to saying W  ∗RT Z. The plan itself, though, actually encodes the sequence of
actions used. In practice, a partial configuration may still be too specific, so we will focus on
some set of partial goals Z1, . . . Zk. We will then ask if there is a plan leading from W to any of
these partial goals. That is, we ask if W  ∗RT Zi for some 1 ≤ i ≤ k.

In order to have a notation for the label of a node, we define, for each node w, its label with
respect to an initial configuration W inductively as follows. For the root w0,

valuew0(W ) := W.

For any edge (v, w), labeled byXX ′ →A Y Y
′, if valuev(W ) is defined and valuev(W ) = V XX ′

for some V , then

valuew(W ) := V Y Y ′.

Otherwise it is undefined.

Example 3.1

We start with a secret sharing example. We will say that the triple (A, 15, pky) means that
“Alice’s passkey is 15”, and that the triple (B, 7, share) mean that “Bob’s share is 7”. Similarly,
(A, 8, share) means that “Alice’s share is 8”. Then the initial configuration W of the system
might look like the following:

W = PA(A, 15, pky), SA(B, 7, share), QB(B, 7, share)

That is, Alice knows both her passkey and Bob’s share, while Bob only knows his share. If
Charlie also begins with some information then we would need to explicitly add more facts to
the configuration. Before continuing the example we must explain how the agents can transform
the configuration. Let Alice’s actions include

r1 : PA(A, 15, pky)SA(B, 7, share)→A PA(A, 15, pky)SA(B, 7, share)P ′(A, 8, share)

and let Bob’s actions include

r2 : QB(B, 7, share)P ′(A, 8, share)→B QB(A, 15, pky)
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When R = {r1, r2}, by applying r1 and r2 in that order, we find that

PA(A, 15, pky)SA(B, 7, share)QB(B, 7, share) ∗R QB(A, 15, pky)

which means that Bob is able to learn Alice’s passkey, 15. Notice that, in this example, the
passkey never shows up in any public predicate. So if the above system evolution happens in the
presence of a third agent, Charlie, then Charlie will not learn the passkey.

4 Data Confidentiality Policies

In this section we present the relevant definitions for expressing confidentiality violations in
systems. We present data confidentiality policies and two types of policy violations. We also
present two versions of the collaborative planning problem with confidentiality.

4.1 Motivation and Definitions

It is natural for the sensitivity of information to depend on both the context of the collaboration
as well as the specific agents involved. For example, Alice may reveal information to a colleague
when out socializing that she would not reveal to the same person while at work. Similarly, at
work, Alice will likely be willing to reveal some information to certain people but not to others.
Thus our formalism should be flexible enough to express these types of subtleties.

In formalizing what it means for Alice’s secrets to leak, we first need to know where Alice
is willing to let her information flow. We will assume that each agent has a data confidentiality
policy which specifies which pieces of data other agents are prohibited from learning. In order
to motivate the definitions which follow, we consider a scenario from the medical field.

Scenario: Medical Test.
Consider a patient at a hospital who needs a medical test performed in order for her doctor to

provide a diagnosis and possibly prescribe appropriate medication. Such a task will involve not
only the patient and her doctor. It will also involve a nurse to draw the blood, a lab technician
to perform the test, and a secretary at the front desk to take care of the paperwork. Although
there may be other agents typically involved in this task (such as an insurance company) we will
limit ourselves to these agents for simplicity. Our focus in this scenario is on which pieces of
information the patient is willing to share with the different agents, and in what combination.

In order for the test to be performed, the patient will request and schedule a test with the
receptionist. The receptionist anonymizes the patient by giving her an ID number. The patient
then goes to the nurse (with her ID number, not her name) to get a test sample taken. The nurse
sends the test sample to a lab where the test is performed and the result is determined. The
lab can then pass on the result to the doctor. We assume here that the doctor can recover the
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Agent Critical Information
Receptionist (Name, Test Result), . . .
Nurse (Name, ID ]), . . .
Lab Technician (Name, Test Result), . . .
Doctor No Restrictions

Figure 2: Part of a patient’s data confidentiality policy.

patient’s name from the ID number. At this point the doctor can make a diagnosis and prescribe
the appropriate medication.

This might be formalized by the following set of actions:

Ppatient(name, test type) →patient P ′(name, test type)

Rreception(name, test type) →reception Rreception(ID#, test type)

Nnurse(ID#, test type) →nurse Nnurse(ID#, test sample)

Llab(ID#, test sample) →lab Llab(ID#, test result)

Ddoctor(ID#, test result) →doctor Ddoctor(name, diagnosis, prescription)

Of course, to allow the proper flow of information each agent would also need an action
which publishes the appropriate information to a public predicate, as well as an action which
reads information from a public predicate into their local predicate. We could then apply each of
the above actions in order, interspersed with the appropriate read and publish actions to conclude
that Ppatient(name, test type) ∗ Ddoctor(name, diagnosis, prescription).

We assume the patient has some idea of which information should not be learned by each
of the agents. This information is specified in the patient’s data confidentiality policy, a partial
example of which can be found in Figure 2. For example, the secretary has no need to learn the
patient’s name in combination with the test result. Similarly, the point of anonymizing the patient
is so that the nurse does not learn both the patient’s name and ID number together. Although the
lab technician must learn the result of the test, she should not know who the result pertains to.
That is, she should not know both the name and the test result together, even though she can
learn both the ID number and test result. In this scenario we assume the patient has no problem
with the doctor learning any medical information.

Whether or not this policy is met will depend on a number of things, but in particular, it will
depend on the actions the other agents have. If the lab technician can read P ′(name, test type)
when the patient publishes it, then she may be able to combine it with Llab(ID#, test result)
to violate the patient’s policy. However, if none of the lab technician’s read actions have a pre-
condition matching P ′(name, test type), then she cannot do this.

The reader should not be concerned with the specifics of this scenario, but rather with the
expressivity of data policies. The patient’s policy is some way of indicating which configurations
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she considers as a violation of her confidential information. Although we only listed part of the
patient’s policy in Figure 2, each agent may have a similar policy. Indeed, there may be some
external policy which is mandated by law.

In Figure 2 we simply used a tuple of values to specify data flows which are not allowed. In
our formalism, these tuples actually represent a set of partial configurations which are considered
violations of the confidentiality policy. For example, the patient’s policy specifies that the com-
bination of (name, test result) should not be learned by the lab technician. The patient may
consider that the lab technician knows these values if they show up in any of her private pred-
icates or in a public predicate. Thus a configuration containing Llab(name)Llab(test result)
violates the policy just as Llab(name, test result) does. However, the patient may not mind the
former configuration because the name and test results are not explicitly linked.

If a configuration violates the confidentiality policy of one of the agents, then we call it a
critical configuration. A confidentiality policy is just a way of expressing which configurations
the agent considers to be critical. Notice that since policies only specify which configurations
must not occur, no conflict arises when combining policies. The combination of two policies
simply specifies the union of their critical configurations.

When modeling real situations these policies serve as constraints in the model, which may
not represent real constraints in the actual system. For example a policy which is mandated by
law will impose real restrictions on the system, while a patient’s policy may simply represent her
personal preferences. With enough knowledge of the system, she can use this policy to guide
decisions about what collaborations she enters into.

Our only assumption on confidentiality policies is that they specify which configurations are
critical (and implicity which are not). Discussions of how these policies may be represented
is beyond the scope of this work. It would be an interesting area for further research to join
our formalism with one of the numerous privacy languages already in existence [?, ?]. We note,
though, that our complexity results are not affected by the details of how policies are represented,
as long they satisfy certain assumptions to be detailed later. We henceforth assume that there is
some fixed representation of these policies.

Equipped with the notion of critical configurations we are now ready to formally define what
it means both for a system to comply with the policies and likewise for a plan to comply with the
policies.

Definition 4.1 Given a set of confidentiality policies, a local state transition system in initial
configuration W is said to be compliant if every critical configuration defined by the policies is
unreachable from W .

Definition 4.2 Given a set of policies, a plan is said to be compliant if none of the configurations
in the plan are critical.

So a compliant plan is one which avoids the critical configurations. It should be clear that
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a system is compliant if and only if every plan in the system is compliant. However, there are
many systems which have both compliant and non-compliant plans.

These definitions differ somewhat from our original privacy/secrecy condition in the prelim-
inary version of this paper [?]. We used the following definition instead.

Definition 4.3 We say that a local state transition system in initial configurationW , protects the
privacy of agent A if every term t which, in the initial configuration W , occurs only in private
(High) predicates of A, also occurs only in private (High) predicates of A in any reachable
configuration.

In fact, we can express this condition as a data confidentiality policy which is entirely deter-
mined by the initial configuration. The critical configurations of this policy are those configura-
tions which contain predicates of the form PB(t, ū), where t is a term which is to be protected,
B is an agent not equal toA, and ū is an arbitrary (and possibly empty) tuple of terms. Similarly,
configurations containing P ′(t, ū) would be critical. In particular, this policy does not distin-
guish between other agents. We assumed that agent A was unwilling to reveal any secret term t
to any agent.

In the end we considered this condition to be too restrictive, so we generalized the notion
to data confidentiality policies which are much more flexible. This is also what caused us to
consider the weaker notion of plan compliance. Even somewhat liberal policies may be too
strong to satisfy system compliance. In Section 6 we discuss the effect these changes had on our
complexity results and show that Corollary 6.6 in [?] is actually a corollary of Theorem 6.3 in
this current paper.

4.2 The Collaborative Planning Problem with Confidentiality

While the classical planning problem asks only for a plan which leads from the initial configu-
ration to a goal configuration, our setting requires more. We must also ask if the confidentiality
policies of all the agents are respected. There seem to be two natural ways to do that which
correspond to Definitions 4.1 and 4.2 respectively.

The Collaborative Planning Problem with System Compliance:
Given a local state transition system T , initial configuration W , a (partial) goal configura-

tion Z, and a set of confidentiality policies, does the system comply with the policies, and does
there exist a plan leading from W to Z?

The Collaborative Planning Problem with Plan Compliance:
Given a local state transition system T , initial configuration W , a (partial) goal configura-

tion Z, and a set of confidentiality policies, is there a compliant plan which leads from W to Z?

A positive answer to the first version gives very strong guarantees about policy compliance.
Each agent can be sure that even if the other agents deviate from the plan which exists, their
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confidentiality policy will not be violated. The policies are respected regardless of the behavior
of the agents. A positive answer to the second version is not nearly as strong. It simply says that
policy compliance and goal reachability are not contradictory in the given system. It would still
be possible for an agent to perform extra local computations after reaching the goal in order to
learn secrets and violate another agent’s policy. However, depending on the level of trust among
the agents, this may still be an important question, especially if the answer to the first version is
“no”.

This could be a hard question to answer in the general case. In particular, if we put no
restrictions on the form of the actions, then we could grow the global state to an arbitrarily
large size. The general case for goal reachability (where there are no confidentiality policies)
has the same complexity as the coverability problem for Petri nets [?, ?, ?, ?]. Although this is
decidable [?], it overestimates the complexity of the typical case.

It is possible to model a large class of collaborations using a fixed amount of total resources.
We may assume that the total number of facts is fixed at all times. This is enforced by limiting
the transitions to be well-balanced [?]. A well-balanced transition is a transition which has
the same number of facts in the pre-condition and the post-condition (counting repetitions). In
well-balanced local state transition systems, the total number of facts present in the global state
remains constant.

Intuitively, this restriction forces each agent to have a buffer or database of a fixed size before
the collaboration. The agents may update values in this buffer and erase values to leave empty
slots, but they may not change the size of the buffer. This can be done in a natural way. Consider
each predicate in the language as a field in some database. Then PA(t) can be interpreted as
saying that the field PA of A’s private database is occupied by t. Although using well-balanced
actions forces us to fix the number of fields of this database, there is no a priori bound on the
number of fields we may choose.

In reality, the model is more flexible than that. There is one global buffer of a fixed size, and
the agents are free to release some fields for use by the group and claim others from the group.
The model allows for a potential fight for space resources which could result in a form of denial
of service. Since we are considering situations in which the agents are mostly cooperative and
since our security focus is on the inappropriate release of information, we do not explore this
dynamic of well-balanced systems.

While at first the well-balanced condition may seem like a big restriction, in practice we are
still able to model most scenarios in a natural way. To demonstrate this, we transform Exam-
ple 3.1, which is not well-balanced, into a well-balanced example. Assume that our language has
a special constant ∗. A predicate of the form PA(∗) can be interpreted as saying that the field PA
is empty. We assume that confidentiality policies never refer to this constant. Alice’s action may
then be rewritten in the following well-balanced form.

r1 : PA(A, 15, pky)SA(B, 7, share)P ′(∗)→A

PA(A, 15, pky)SA(B, 7, share)P ′(A, 8, share)
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Likewise, Bob’s action can be rewritten in a well-balanced form.

r2 : QB(B, 7, share)P ′(A, 8, share)→B QB(A, 15, pky)P ′(∗)

In this way, if the initial configuration has m predicates (many of which may be of the form
P (∗)) we can model any non-balanced computation which does not grow the global state to a
size greater than m. In particular, using well-balanced actions does not change the reachabil-
ity of states, as long they are reachable in a non-balanced system evolution which limits the
configuration size to m.

In Section 6 we will also refer to a slightly more general case of non-lengthening local state
transition systems, for which in each action the number of facts in the post-condition is at most
the number of facts in the pre-condition.

4.3 Remarks

In modeling a real world collaboration the agents may have a given protocol in mind which they
would like to follow. The actions of each agent would then include the actions which model
the agents behavior in the protocol. The actions and initial configuration then determine a space
of collaborative plans or protocols which, by design, contains the protocol the agents had in
mind. For a correctly designed protocol, the goal reachability part of the Collaborative Planning
Problem with System Compliance should be trivial to show. We can just look at the sequence of
actions which model a correct execution of the protocol. The hard part is proving that the system
is in fact compliant with the confidentiality policies.

For a given agent, all the other agents can be viewed as a kind of adversary. Indeed the prob-
lem is akin to proving properties of security protocols in the presence of a Dolev-Yao attacker [?].
One key difference is that the nondeterminism is now spread out among all the agents, but these
agents have bounded memory (in the case of well-balanced actions). The agents’ also each have a
potentially different set of cryptographic operations encoded into their actions, while the Dolev-
Yao adversary has one fixed set of actions at its disposal. Another difference is that we do not
accommodate agents who create fresh data. This allows us to show that the collaborative plan-
ning problems are both decidable. In fact, in other work [?] we lift the well-balanced restriction
and show that the problem with system compliance is still decidable, but the version with plan
compliance becomes undecidable.

Because of the stateful nature of our formalism, we are able to ask privacy/secrecy questions
which have not been studied extensively in the literature. Namely, can the other agents learn
Alice’s current confidential information? To illustrate this point let us return, once again, to
the Example 3.1 above. Alice’s action may not only release enough information to reveal her
passkey, it may actually change her passkey in the process. The action may be changed to the
following:
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r1 : PA(A, 15, pky)SA(B, 7, share)P ′(∗)→A

PA(A, 21, pky)SA(B, 7, share)P ′(A, 8, share)

Notice that Alice’s passkey has changed from 15 to 21.
Bob would still be able to learn Alice’s old passkey, but he has no access to her current

passkey. Her old passkey is obsolete and will not help Bob learn any sensitive secrets. The real
danger arises when Bob is in possession of Alice’s current private passkey. This may provide him
access to more sensitive data. Our confidentiality policies may be expressive enough to specify
this type of distinction between current and obsolete. However, for the moment we simply
remark that a stateful approach is amenable to this distinction and we leave a more complete
investigation of it for future work.

5 Foundation in Logic

In this section we present the logical foundation of our approach. We demonstrate a connection
to a variation of linear logic known as affine logic. We include it for several reasons. First,
it represents an important stage in the development of our ideas. It provides a kind of “sanity
check” showing that we can formally ground our ideas in a well-understood formalism. Second,
we find it interesting that the proper connection is to affine logic and not to linear logic. This is an
important difference from MSR [?] which has been shown to have correspondences with linear
logic [?]. We actually use this connection to affine logic rather explicitly in other work [?, ?]
which helps to illuminate some of the differences from MSR and its connection to linear logic.
Finally, it can be desirable to have such a logical foundation because we are often able to gain
new insight by thinking in terms of a well established formalism. For example we may be able
to apply existing tools, which work with some logical formalism, to the problem at hand.

Linear logic (LL), which was introduced in [?], is a resource-sensitive refinement of tradi-
tional logic. It is presented as a Gentzen style sequent calculus. A sequent of the form Γ ` ∆
says roughly that the resources in the multiset Γ can be used to produce the multiset ∆. Linear
logic differs in a number of ways from traditional logic, but most notably it does not allow the
rules of weakening or contraction.

The rule of contraction is given by

A,A,Γ ` ∆

A,Γ ` ∆

It says that if we can produce ∆ using Γ and two copies of A, then we can also produce ∆ with
Γ and one copy of A. Weakening is the opposite rule and is given by

Γ ` ∆
A,Γ ` ∆
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It says that if we can produce ∆ using Γ, then we can also produce ∆ with Γ and A, for any A.
The effect of disallowing the contraction rule is that it forces us to use each resource at most

once. The effect of disallowing the weakening rule is that it forces us to use each resource at
least once. This is why linear logic is popular when trying to model resource-sensitive systems.
It allows the available resources to grow and shrink, in contrast to traditional logic in which the
resources grow monotonically. Linear logic also provides a mechanism which allows certain
resources to be used any number of times. This will be useful when we use logic to model
actions.

At a lower level, linear logic splits the traditional connectives defining conjunction and dis-
junction into two forms. For example, the traditional conjunction ∧ is split into⊗ (multiplicative
conjunction) and & (additive conjunction). A derivation of a ⊗ conjunction forbids any sharing
of the resources used to derive each conjunct. In contrast, a derivation of a & conjunction requires
all resources to be shared.

Affine logic (AL) is the variation of linear logic which allows weakening, but still disallows
contraction. Thus, in affine logic, we may use each resource either once or not at all. Affine logic
is therefore an appropriate logic to use when we want to model the reachability of partial goals.
It allows us to work with the relevant resources in arbitrary contexts.

There is a well-known correspondence between state transition systems and linear logic. We
extend this connection to one between local state transition systems and affine logic. By encoding
the objects of local state transition systems as logical formulas we are able to relate partial goal
reachability with derivability of certain Gentzen sequents within affine logic.

Our translation of local state transition systems into affine logic follows closely the transla-
tion of ordinary state transition systems into linear logic. There is one notable difference which
deserves mention here. If we want our translation to preserve all key elements of local state
transition systems, we must preserve the information which allows us to determine which ac-
tion is allowed to be used by which participant. For this reason we translate actions into linear
implications with a special constant which acts as a “lock”, as described below.

For a local state transition system T , multisets of facts are encoded using the multiplicative
conjunction, ⊗ (which is commutative).

pSq =
⊗

S.

The empty multiset is encoded as the multiplicative unit.

p·q = 1.

Transition rules are encoded as linear implication. This is where we use the “lock”. For each
agent A we have a constant symbol qA. We then encode transition rules using linear implication
as follows.

pXX ′ →A Y Y
′q = qA ⊗ pXX ′q ( qA ⊗ pY Y ′q
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This technique forces derivations in affine logic to contain all the relevant information about
which agent is applying an action at a given point. Now, for the rule set RT we can define

pRT q = {prq : r ∈ RT }.

Since locks of the form qA are part of the linear implications we must also include these
constants as part of the global configuration. If I is the set of participants of T , then we define

pIq =
⊗
{qA : A ∈ I}.

We use a notion of provability which is based on an intuitionistic version of affine logic in
which the sequents have the form

Γ; ∆ ` C

where ∆ is a linear context, Γ is an unrestricted context in which the resources may be used as
many times as necessary, and C is a single formula (see [?]). The relevant rules of affine logic
are presented in the appendix. Under our encoding of local state transition systems we are able
to achieve the following results.

Theorem 5.1 (Soundness) For every pair of states W , Z, and every rule set RT defining a
participant set I , ifW  ∗RT Z then pRT q; pIq⊗ pWq ` pIq⊗ pZq is derivable in affine logic.

Theorem 5.2 (Completeness) For every pair of states W , Z and every rule set RT defining a
participant set I , if pRT q; pIq⊗ pWq ` pIq⊗ pZq is derivable in affine logic thenW  ∗RT Z.

In order to prove these results we will pass through soundness and completeness results
which relate exact reachability to derivability in linear logic (Lemmas 5.1 and 5.2 respectively).
We then prove Lemma 5.3 which relates derivability of sequents in linear logic to derivability of
sequents in affine logic. This last lemma allows us to lift the soundness and completeness results
with respect to linear logic to the corresponding results with respect to affine logic. Since we
are concerned with sequents in both linear logic and affine logic we will write Γ; ∆ `LL C for
sequents which are meant to be derived in linear logic, and we write Γ; ∆ `AL C for sequents
which are meant to be derived in affine logic.

Lemma 5.1 For every pair of states W , Z and every rule set RT defining a participant set I , if
W >∗RT Z then pRT q; pIq⊗ pWq `LL pIq⊗ pZq is derivable.

Proof: (by induction on the length of the action sequence) We consider two basis cases:

Length 0 transition sequence: W >0
RT

Z.
That means that W = Z and pRT q; pIq⊗ pWq `LL pIq⊗ pWq is the conclusion of the

identity rule.
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Length 1 transition sequence: W >1
RT

Z.
SoZ is reachable fromW using only one rule fromRT . Label that rule by r : XαX

′ →α YαY
′.

We get the following derivation:

pRT q; qα ⊗ pXαq⊗ pX ′q `LL qα ⊗ pXαq⊗ pX ′q pRT q; qα ⊗ pYαq⊗ pY ′q, V `LL pIq⊗ pZq
( `

pRT q; qα ⊗ pXαq⊗ pX ′q ( qα ⊗ pYαq⊗ pY ′q, qα ⊗ pXαq⊗ pX ′q, V `LL pIq⊗ pZq ⊗`
pRT q; qα ⊗ pXαq⊗ pX ′q ( qα ⊗ pYαq⊗ pY ′q, pIq⊗ pWq `LL pIq⊗ pZq

clone
pRT q; pIq⊗ pWq `LL pIq⊗ pZq

Reading this derivation from the bottom up, we first clone the action from the unrestricted
context into the linear context. We then split the state into the precondition of the action,
qα⊗ pXαq⊗ pX ′q and the rest of the state V = (pIq⊗ pWq) \ (qα⊗ pXαq⊗ pX ′q). We then
apply the( ` rule to find two sequents. The left sequent is obtained by the identity rule. The
right sequent can be separated by the use of ⊗r to reduce it to two applications of the identity.
This shows that the lemma holds for length 1 transition sequences.

Induction Step:
Assume it holds for transition sequences of length ≤ n. Now assume that W >n+1

RT
Z. Then

we know that there is some U such that W >nRT U and U >1
RT

Z. Therefore our induction hy-
pothesis tells us that we have two derivations ending in pRT q; pIq⊗ pWq `LL pIq⊗ pUq and
in pRT q; pIq⊗ pUq `LL pIq⊗ pZq. We can apply the cut rule with these two conclusions to
obtain a derivation with the conclusion pRT q; pIq⊗ pWq `LL pIq⊗ pZq as desired.

Lemma 5.2 For every pair of states W , Z and every rule set RT defining a participant set I , if
pRT q; pIq⊗ pWq `LL pIq⊗ pZq is derivable then W >∗RT Z.

Proof: Completeness is much more complicated than soundness. The reason for this is that there
may be many different LL-derivations of a given formula. We cannot simply assume that the
derivation which is assumed to exist has a nice form that corresponds to the form of a derivation
which arises in the proof of soundness. We will briefly sketch the ideas here noting that the
key to this argument is the ability to permute certain rules above or below others. We direct the
reader to [?] for the proofs of these permutation rules. We also note that LL completeness has
been shown for rewriting systems before in [?, ?].

By cut elimination there is a cut-free derivation of the sequent

pRT q; pIq⊗ pWq `LL pIq⊗ pZq.

In particular, this derivation satisfies the sub-formula property which states that any formula
occurring in the derivation must be a sub-formula of the formulas occurring in the conclusion.
This allows us to restrict our attention to derivations with only the following rules: id, clone, ⊗`,
⊗r, 1`, 1r, ( ` and( r. Furthermore, we can rule out derivations which use(r since we
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do not use nested implications. As mentioned above, these rules may be permuted in restricted
ways as proven in [?]. These permutation results allow us to assume that clone appears below
all other rules, ⊗r occurs just below id or 1r which occur at or near the leaves, and that ⊗` and
1` are applied greedily (when reading the derivation from bottom to top). We must respect the
nesting structure, so that in decomposing (A⊗B)( C we must apply the( ` rule below the
⊗` rule. The derivation can thus be assumed to have the form seen in Figure 3.
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l
l
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⊗`, 1`

...
( `
⊗`, 1`
⊗r

id, 1r

Figure 3: The form of a permuted proof.

Note that the conclusion of each( ` is of the form pRT q; pr̄iq, pIq⊗ pWiq `LL pIq⊗ pZq,
where pr̄iq is a multiset of m - i encodings of actions which have yet to be decomposed, and
where there are m applications of( ` in the derivation. In the conclusion of the bottom appli-
cation of( ` is W0 = W . In the right premise of the top application of( ` is Wm = Z.

Claim: There is a transition sequence r1, . . . , rm such that

W = W0>r1 W1>r2 · · ·>rm Wm = Z

allowing us to conclude W >∗RT Z.
The claim follows from the simple observation that if the occurrence of ( ` between Wi

andWi+1 decomposes qα⊗pXαq⊗pX ′q ( qα⊗pYαq⊗pY ′q thenWi = XαX
′V for some V

andWi+1 = YαY
′V for the same V . ThusWi>RT Wi+1 viaXαX

′ →α YαY
′. This observation

is easily turned into an inductive proof.

Lemma 5.3 Γ;W `AL Z is derivable if and only if there is some U such that Γ;W `LL Z ⊗U
is derivable.

Proof: This lemma is an immediate corollary to Lemma 3.1 in [?]. The if -direction is immedi-
ate since every LL-derivation is also an AL-derivation. The only if -direction requires a simple
induction on the structure of the LL-derivation. We direct the reader to [?] for more details.

Proof: (of Theorems 5.1 and 5.2) The three lemmas combine in the following way to imply
soundness and completeness with respect to AL.
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W  ∗RT Z ⇔ (by definition)
∃U s.t. W >∗RT ZU ⇔ (Lemmas 5.1, 5.2)

∃U s.t. pRT q; pIq⊗ pWq `LL pIq⊗ pZq⊗ pUq⇔ (Lemma 5.3)
pRT q; pIq⊗ pWq `AL pIq⊗ pZq

The above theorems relate the existence of a plan to derivability in pure affine logic. It is also
possible to translate local state transition systems into affine logic theories. Namely, for every
action of the form X →A Y we include a new axiom of the form qA⊗X ` qA⊗Y . The set
of axioms of a theory T is denoted by AxT . Theories with axioms of this form are called (pure)
Horn theories.

It can be easily seen that finite Horn theories can be faithfully represented in the formalism
above, by listing the non-logical axioms, AxT, in the unrestricted context, Γ.

Under this interpretation, the existence of a plan leading from an initial state W to an exact
goal Z can be shown to be equivalent to derivability of the sequent pIq ⊗W ` Z in the corre-
sponding Horn LL-theory. Also, pIq⊗W ` Z is derivable in the corresponding AL-theory if
and only if pIq⊗W ` Z⊗U is derivable in the LL-theory for some U [?].

The definition of system compliance is essentially an unreachability condition. Namely, we
expect that every critical configuration should be unreachable. Under our translation into affine
logic, this is the same as saying that the corresponding sequents should not be deducible. Trans-
lating the definition of plan compliance is more subtle. It corresponds to a certain kind of normal
form proof not containing sequents whose left hand side represents a critical configuration. We
do not investigate this relation further.

6 Complexity

In this section we determine exactly the complexity class of both the Collaborative Planning
Problem with System Compliance and the Collaborative Planning Problem with Plan Compli-
ance with well-balanced transitions. In Section 6.1 we demonstrate a PSPACE lower bound for
these problems. Section 6.2 demonstrates a PSPACE upper bound for both of these problems.

6.1 Lower PSPACE Bounds

We start with a reduction from the PSPACE-complete problem IN-PLACE ACCEPTANCE for
non-deterministic Turing machines [?].

Theorem 6.1 Any non-deterministic Turing machineM that accepts in space n can be faithfully
represented within well-balanced local state transition systems.

Proof. Let M be a non-deterministic machine that accepts in space n.
Without loss of generality, we assume the following:

21



(a) M has only one tape, which is one-way infinite to the right. The leftmost cell (numbered
by 0) contains the marker $ unerased.

(b) Initially, an input string, say x1x2 . . . xn, is written in cells 1, 2,. . . ,n on the tape. In addition,
a special marker # is written in the (n+1)-th cell.

$ x1 x2 · · · xn # . . .

(c) The program of M contains no instruction that could erase either $ or #. There is no instruc-
tion that could move the head of M either to the right when M scans symbol #, or to the
left when M scans symbol $. As a result, M acts in the space between the two unerased
markers.

(d) Finally, M has only one accepting state, and, moreover, all accepting configurations in
space n are of one and the same form.

For each n, we design a local state transition system Tn (with a single agent A) as follows.
We introduce the following 0-ary predicates (propositions), which are assumed to be private
predicates of A:

(a) Ri,ξ stands for “the i-th cell contains symbol ξ”,
here i=0, 1, . . . , n+1, ξ is a symbol of the tape alphabet of M ,

(b) Sj,q means “the j-th cell is scanned by M in state q”,
here j=0, 1, . . . , n+1, q is a state of M .

Given an instantaneous description (configuration) of M in space n - that M scans j-th cell in
state q, when a string ξ0ξ1ξ2 . . . ξi . . . ξnξn+1 is written left-justified on the otherwise blank
tape, we will represent it by a configuration of Tn of the form

Sj,qR0,ξ0R1,ξ1R2,ξ2 · · ·Rn,ξnRn+1,ξn+1 . (1)

Necessarily, ξ0 = $, and ξn+1 = #.
Each of the instructions of M , qξ→q′ηD:

“if in state q looking at symbol ξ, replace it by η, move the tape head one cell in
direction D along the tape, and go into state q′”,

is specified by the set of n+2 actions of the form, i=0, 1, . . . , n+1 :

Si,qRi,ξ →A SiD,q′Ri,η, (2)

where iD := i+1 if D is right, and iD := i−1 if D is left, and iD := i, otherwise.
(Neither iright = n+2, nor ileft = −1 can occur.)

We denote the set of all these actions by RTn .
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Lemma 6.1 Given an input string x1x2 . . . xn of length n, let Wn be a configuration of Tn of
the form (1), which represents the initial configuration of M with the input string x1x2 . . . xn,
and let Zn be a configuration of Tn of the form (1), which represents the unique accepting
configuration of M of length n.
The following propositions are pairwise equivalent:

(a) The input string x1x2 . . . xn is accepted by M .

(b) Wn>
∗
RTn

Zn

(c) Wn  ∗RTn Zn

(d) There exists a finite plan based on RTn that (exactly) leads from Wn to Zn.

Proof. Our encoding proceeds in a straight course, so that given any successful non-deterministic
computation in space n that leads from the initial configuration represented by Wn to the accept-
ing configuration represented by Zn we can rewrite it as a sequence of actions from RTn leading
fromWn toZn. This is done simply by writing (in order) the actions fromRTn which correspond
to the transitions used in the successful computation. This shows that Wn>

∗
RTn

Zn. Hence (a)
implies (b). Item (c) follows from (b) by the definitions, and we noted earlier that (d) and (b) are
equivalent.

The most complicated direction is that such a straightforward encoding is faithful. Suppose
that Wn  ∗RTn Zn. Then, for some V1 we have Wn>

∗
RTn

ZnV1. That is, there is a finite plan P
based on RTn that exactly leads from Wn to ZnV1.

Since each of the actions (2) is well-balanced, and the number of facts in both Wn and Zn is
just the same n+3, this V1 must be empty, which means that for the leaf ` in P , the following
holds:

value`(Wn) = Zn.

Hence Wn>
∗
RTn

Zn, and so (c) implies (b).
On the other hand, because of the specific form of our actions (2) any valuev(Wn) in P is

of the form (1), and, hence, represents a configuration of M in space n.
Passing through this P from its leaf to its root v0, we prove that whatever vertex v we

take, there is a successful non-deterministic computation performed by M leading from the
configuration represented by valuev(Wn) to the accepting configuration represented by Zn.

In particular, since valuev0(Wn) = Wn, we can conclude that the given input string x1x2 . . . xn
is accepted by M , and so (b) implies (a).

Notice that the signature of Tn consists only of O(n) 0-ary predicate symbols. The number
of the constants invoked is zero. If we confine ourselves both to a fixed number of predicate
symbols and to a fixed number of constants, Theorem 6.1 fails because of the polytime upper
bound of Theorem 6.5. Nevertheless, the next Theorem show that we get PSPACE-hardness also
at the opposite end of the “scale” with a fixed number of predicate symbols and an unbounded
number of constants.
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Theorem 6.2 Any non-deterministic Turing machine M that accepts in space n can be faith-
fully represented in well-balanced local state transition systems with a fixed number of unary
predicates.

Proof. For each n, we will design a local state transition system T ′n (with a single agent A) by
modifying the construction of Theorem 6.1 as follows.
Assume a list of constants:

c0, c1, c2, . . . , cn, cn+1.

We introduce the following unary predicate symbols, which are assumed to be private predicates
of A:

(a) R̂ξ, for every ξ from the tape alphabet of M .

The intended meaning of R̂ξ is:
R̂ξ(ci) = Ri,ξ.

(b) Ŝq, for every q from the set of states of M .

The intended meaning of Ŝq is:
Ŝq(cj) = Sj,q.

Given an instantaneous description (configuration) of M in space n - that M scans j-th cell in
state q, when a string ξ0ξ1ξ2 . . . ξi . . . ξnξn+1 is written left-justified on the otherwise blank
tape, now it is represented as (cf. (1)):

Ŝq(cj)R̂ξ0(c0)R̂ξ1(c1) · · · R̂ξn(cn)R̂ξn+1(cn+1). (3)

Each of the actions of the form (2) is rewritten as:

Ŝq(ci)R̂ξ(ci)→A Ŝq′(ciD)R̂η(ci). (4)

The faithfulness of the modified encoding is established by

Lemma 6.2 Given an input string x1x2 . . . xn of length n, let Wn be a configuration of T ′n of
the form (3) that represents the initial configuration of M with the input string x1x2 . . . xn, and
let Zn be a configuration of T ′n of the form (3) that represents the unique accepting configuration
of M of length n.
The following propositions are pairwise equivalent:

(a) The input string x1x2 . . . xn is accepted by M .

(b) Wn>
∗
RT ′n

Zn

(c) Wn  ∗RT ′n
Zn

(d) There exists a finite plan based on RT ′n that (exactly) leads from Wn to Zn.
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Proof. The proof mimics exactly the proof of Lemma 6.1.

Theorems 6.1 and 6.2 say that as long as either the number of predicate symbols or the num-
ber of constants in the signature is not bounded in advance, then goal reachability is PSPACE-
hard. As the next corollary shows, this implies the PSPACE-hardness of both versions of the
collaborative planning problem with compliance to a confidentiality policy.

Corollary 6.1 Both the collaborative planning problem with system compliance and the collab-
orative planning problem with plan compliance are PSPACE-hard.

Proof. The embeddings given in the proofs of Theorems 6.1 and 6.2 are into systems with a
single agent whose confidentiality policy does not view any configuration as being critical. Thus
the hardness is already achieved in the single-agent case where both system compliance and plan
compliance are vacuously true.

6.2 Upper Bounds

In determining the upper complexity bounds, we will be very explicit about what parameters
contribute to the complexity, as well as how they are represented. In both versions of the problem
the complexity should be with respect to the size of the input. The problem has four inputs: 1) the
transition system itself, given by the (well-balanced) actions available to the agents, 2) the initial
configuration of the system, 3) the (partial) goal configurations, and 4) the data confidentiality
policies of each agent.

We begin with the initial configuration of the system. The size of its description depends on
two main factors. The first is the number of facts (including multiplicity) that may be present
in a configuration. Since we are using well-balanced actions this will be a fixed number m.
The second factor is the size of a description of a fact. If we let ST denote the number of facts
expressible in the finite signature Σ, then this will be on the order of log2(ST ). Thus a direct
binary encoding of a configuration can be done inO(m·log2(ST )) space, since each fact requires
O(log2(ST )) space and each configuration has m facts. Similarly, each action can be encoded
in O(2m · log2(ST )) space since an applicable action is just a list of two configurations each
requiring space O(m · log2(ST )).

Now let us discuss the representation of the transition system itself. A simple way of de-
scribing the system is by simply listing each propositional instance of an action. However, any
complexity result which is derived with respect to the size of this list can be misleading. The
problem is that while each instance may have a compact representation, the list may be very
long. In fact, the length of the list is likely to be exponential with respect to the length of a list of
first order actions (actions in which free variables are implicitly universally quantified). In this
case, a PSPACE result with respect to the size of the propositional list of actions hides the fact
that the list is already exponential with respect to another reasonable description of the system.
The PSPACE result is therefore somehow dishonest. The polynomial is already with respect to
an exponential quantity, and so the real result is EXPSPACE.
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Instead of using this straightforward, but inefficient, representation of the actions, we will
use the smallest representation that is possible. Our idea is to use the Kolmogorov descriptive
complexity of the set of actions. This amounts to representing the actions by a program which
recognizes valid instances. The complexity result we obtain will be independent of the specific
program we use. In particular, it will work for the small program that results from the definition
of Kolmogorov complexity [?]. In this way, the PSPACE result implies that the space needed to
perform the computation is polynomial with respect to an optimally small representation of the
system. The result is therefore honest, in that it does not hide any exponential expansion which
arises from inefficient representations of the inputs.

We will use this Kolmogorov descriptive complexity for the other three inputs. The actions
of the transition system will be represented by a program T which recognizes valid instances
of actions. That is, T (r) = 1 if r ∈ RT and T (r) = 0 otherwise. Similarly, the (partial) goal
configurations will be represented by a program G which recognizes the global configurations
which contain one of the partial goals. Finally, the data confidentiality policies will also be
represented by a program C which recognizes global configurations which are critical according
to at least one agent’s policy. In order for the PSPACE result to hold, we must assume that each
of these programs runs in PSPACE with respect to the size of their inputs. For Theorems 6.5
and 6.6 we will need to assume that these programs run in polynomial time.

Although both versions of the collaborative planning problem with compliance are stated as
decision problems, we prove more than just PSPACE decidability. Ideally we would also be able
to generate a plan in PSPACE when there is a solution. Unfortunately, the number of actions in
the plan may already be exponential in the size of the inputs, precluding PSPACE membership of
plan generation. For this reason we use the notion of “scheduling” a plan in which an algorithm
will also take an input i and output the i-th step of the plan.

Definition 6.1 An algorithm is said to schedule a plan if it

(i) finds a plan if one exists, and

(ii) on input i, if the plan contains at least i actions, then it outputs the i-th action of the plan
otherwise it outputs ⊥.

Before presenting the main theorems we include a lemma which gives bounds on ST the
number of facts expressible in a signature, and also on LT (m) which denotes the number of
configurations with m or fewer facts expressible in a signature. We omit the proof as it is purely
combinatorial and does not provide great insight to the concepts presented in this paper.

Lemma 6.3 Given a local state transition system T over a finite signature Σ,

(i) let ST be the total number of facts in signature Σ, and

(ii) let LT (m) denote the total number of configurations in signature Σ whose number of facts
(counting repetitions) is bounded by m.
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Then

(a) ST ≤ (J ·Da), where:

(a1) J is the total number of predicate symbols in signature Σ,
(a2) a is an upper bound of their arity, and
(a3) D is the total number of constants in signature Σ.

(b) For any m:

LT (m) ≤
(
m+ ST
m

)
=

(m+ ST )!

m! · (ST )!
≤ min{(ST + 1)m, (m+ 1)ST }.

We are now ready to demonstrate the complexity of the two versions of the planning prob-
lem with confidentiality. The following theorem says that the problem of determining system
compliance and scheduling a plan is in PSPACE.

Theorem 6.3 There is an algorithm applicable to the following inputs:

(i) a program T which recognizes (in pspace) the actions of a local state transition system T
with actions RT ,

(ii) an initial configuration W ,

(iii) a program G which recognizes (in pspace) global configurations which contain at least
one of the partial goals Z1, . . . , Zk,

(iv) a program C which recognizes (in pspace) global configurations which contain at least
one of the critical configurations which violate a policy, and

(v) a natural number 0 < i ≤ LT (m)

which behaves as follows:

(a) If all critical configurations are unreachable from W , and if there is a plan leading from W
to some Zi, then it outputs ”yes” and schedules the plan, otherwise it outputs ”no”.

(b) It runs in polynomial space with respect to |T |, |W |, |G| and |C|.

Proof. The proof will rely on several critical facts about PSPACE. Namely, we rely on the equiv-
alence of PSPACE, NPSPACE and COPSPACE [?].

Policy Compliance:
The algorithm first checks that none of the critical configurations are reachable fromW . That

is, we must check that every reachable configuration Z satisfies C(Z) = 0. To do this, we give
a nondeterministic algorithm which accepts exactly when a critical configuration is reachable.
We then apply Savitch’s Theorem [?] to determinize the algorithm. Finally, we swap the accept
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and reject conditions to get a deterministic algorithm which accepts exactly when all critical
configurations are unreachable.

We begin with W0 := W . For any t ≥ 0, we first check if C(Wt) = 1. If so, then we
return “yes”. Otherwise we proceed to guess an action r : XX ′ →A Y Y ′ such that T (r) = 1.
If no such action exists we return “no”. If such an action does exist then we let Wt+1 be the
configuration which results from applying action r to configuration Wt, and we replace Wt by
Wt+1. We can show that a critical configuration is reachable if and only if there is a sequence of
at most LT (m) guesses that ends in a critical configuration. This means we should stop guessing
actions and return “no” after having already guessed LT (m) of them.

It is clear that if a critical configuration is reachable from W then there is a sequence of
guesses which will result in the algorithm returning “yes”. Otherwise the algorithm will always
return “no”. Thus the algorithm correctly decides the reachability of critical configurations. It
only remains to show that this algorithm uses space which is polynomial in |T |, |W |, and |C|.

Let us now determine the space required for each t-th step. We need to record the config-
uration Wt. Since the configuration size never grows, it follows that |Wt| = O(|W |) for any
configuration Wt. Program C can verify C(Wt) = 1 in space polynomial in |Wt| by the assump-
tion about the program C. Our algorithm will need to keep track of C’s functioning which can be
done in space which is polynomial in |C|. We then need to record the action r which is guessed.
In the worst case an action r will havem facts in both the pre- and post-conditions. This amounts
to representing two complete configurations which can be done in O(|W |) space. Program T
can verify T (r) = 1 in space which is polynomial in |r|. Since |r| = O(|W |) this verification
can be done in space polynomial in |W |. Our algorithm will need to keep track of T ’s func-
tioning which can be done in space which is polynomial in |T |. In replacing Wt by Wt+1 we
may have to record two configurations at once, but we never record more than two. Finally, we
should keep track of how many actions we have guessed so far. Since the algorithm stops after
guessing LT (m) actions, this can be maintained on log2(LT (m)) space. By Lemma 6.3, this is
less than m · log2(ST + 1) which we already saw is O(|W |). Since the space at each step is
polynomial in |T |, |W | and |C|, the total space is also polynomial in those parameters. Thus the
problem is found to be in NPSPACE. As stated above, we can determinize this algorithm and
swap the accept and reject conditions to obtain the algorithm we are looking for, which remains
in PSPACE.

Scheduling the Plan:
We now have to give an algorithm to schedule a plan if it exists, and show this algorithm is

also in PSPACE. This is easily done by adapting the algorithm given above. We can replace every
occurrence of C with G, and we get a (nondeterministic) algorithm which decides the existence
of a plan leading from W to one of the goals Z1, . . . , Zk. In order for the algorithm to schedule
a plan (and not just decide the existence of a plan) the algorithm will remember the guess for
the i-th action. This only adds O(|W |) space to the complexity. Thus this algorithm will run
in space which is polynomial in |T |, |W | and |G|. This time we only need to determinize the
algorithm to conclude that it is in PSPACE.

28



Combining the Algorithms:
Finally, we note that we can combine these two algorithms in sequence to get the correct

behavior. If either the first or the second parts fail, then we output “no”. Otherwise we output
“yes” along with the i-th action of the plan. This combined algorithm will run in space which is
polynomial in |T |, |W |, |G| and |C|.

The previous theorem combines with Corollary 6.1 to imply that the collaborative planning
problem with system compliance is PSPACE-complete. Due to the use of data confidentiality
policies, this is actually a generalization of our PSPACE result in [?]. The following corollary
is the formal statement of this fact. (We modify the bound on k, the number of partial goals in
order to keep the input itself within the size bound.)

Corollary 6.2 There is an algorithm applicable to the following inputs:

(i) a program T which recognizes (in pspace) the actions of a local state transition system T
with actions RT ,

(ii) an initial configuration W ,

(iii) a list Z1, . . . , Zk of partial goal configurations for k = O(poly(|W |).

which behaves as follows:

(a) If the system preserves the privacy of all agents according to Definition 4.3, and if there is a
plan leading from W to some Zi, outputs “yes”, otherwise it outputs “no”.

(b) It runs in polynomial space with respect to |T |, and |W | (which is O(m · log2(ST ))).

Proof. The algorithm is essentially the same as in the previous proof. The key difference is that
there is no policy which is input to the problem. Instead, the policy is implicitly encoded in the
initial configuration. We can replace the program C with a process that looks at each term in the
current configuration and determines if it is one of the terms that should be protected according
to Definition 4.3. It then determines if the current occurrence of the term violates Definition 4.3
by looking at who owns the predicate in which it appears. This is easily done in space which is
polynomial in the size of a configuration (i.e. in |W |).

Notice also that the complexity is no longer with respect to |G|, since we input an explicit
encoding of the partial goals Z1, . . . , Zk. Essentially, we replace G with this list. At each step we
can check the current configuration against those partial goals on the list in space which is poly-
nomial in |W |. Assuming k = O(poly(|W |)) is a special case of assuming |G| = O(poly(|W |)),
which allows us to put the polynomial complexity only in terms of |W |.

Intuitively, the corollary follows because the policy can be extracted from the initial configu-
ration in polynomial space, and because we restrict the explicit representation of the partial goals
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as a list to be small. By using data confidentiality policies we gain a great deal of expressiveness
at the small cost of an extra input parameter. Similarly, by considering more possibilities for the
partial goal configurations we must pay a small cost. The corollary is just a special case in which
|G| and |C| are essentially restricted to be polynomial in |W |. Thus these extra parameters only
come into play when their size greatly exceeds that of |W |.

The next theorem states that the problem of scheduling a compliant plan is also in PSPACE.

Theorem 6.4 There is an algorithm applicable to the following inputs:

(i) a program T which recognizes (in pspace) the actions of a local state transition system T
with actions RT ,

(ii) an initial configuration W ,

(iii) a program G which recognizes (in pspace) global configurations which contain at least
one of the partial goals Z1, . . . , Zk,

(iv) a program C which recognizes (in pspace) global configurations which contain at least
one of the critical configurations which violate a policy, and

(v) a natural number 0 < i ≤ LT (m)

which behaves as follows:

(a) If there is a plan leading from W to some Zi which avoids critical configurations, then it
outputs “yes” and schedules the plan, otherwise it outputs “no”.

(b) It runs in polynomial space with respect to |T |, |W |, |G| and |C|.

Proof. We can adapt the proof of Theorem 6.3 for our situation here. At each step, the
nondeterministic algorithm first checks if C(Wt) = 1. If so, then the algorithm outputs “no”.
Otherwise it checks if G(Wt) = 1. If so, then it outputs “yes”. If not, then it guesses an ac-
tion r in order to generate the next configuration Wt+1. In this way, we only continue along a
path if it avoids the critical configurations. As we did above, we can remember the i-th action
using space which is O(|W |). Since we can store each configuration and action in PSPACE as
well as perform the necessary checks in PSPACE, we again find that the entire procedure runs in
PSPACE with respect to the size of the inputs. Finally, we determinize the algorithm according
to the proof of Savitch’s Theorem [?].

This theorem combines with Corollary 6.1 to imply that the collaborative planning problem
with plan compliance is PSPACE-complete.

We end this section by considering the complexity of the planning problems with confiden-
tiality under one further restriction. Instead of viewing the signature Σ of the transition system
as an input to the problem, we fix it in advance. This may be a reasonable thing to consider if the
agents involved participate in distinct yet related collaborations on a periodic basis. For example,
a group of companies may wish to perform quarterly collaborative forecasting. The language of
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the problem can be viewed as a fixed aspect of the system instead of an input parameter. Under
this assumption we show that both versions of the collaborative planning problem are solvable
in polynomial time with respect to the size of their input.

Although the time complexity of the problems is exponential, the following theorems also
serve to isolate the source of the exponential complexity namely, the number of facts expressible
by the signature. In practice, this means that the polynomial time bound will actually be some
polynomial of a large (but fixed) degree.

Theorem 6.5 Let Σ be a fixed finite signature (consisting of a finite number of predicate symbols
with their arity and of a finite number of constants).
Then there is an algorithm βΣ applicable to the following inputs:

(i) a program T which recognizes, in polynomial time, the actions of a local state transition
system T with actions RT ,

(ii) an initial configuration W ,

(iii) a program G which recognizes, in polynomial time, global configurations which contain at
least one of the partial goals Z1, . . . , Zk,

(iv) a program C which recognizes, in polynomial time, global configurations which contain at
least one of the critical configurations which violate a policy

which behaves as follows:

(a) If all critical configurations are unreachable from W , and if there is a plan leading from W
to some Zi, then it outputs the plan, otherwise it outputs “no”.

(b) It runs in polynomial time with respect to |T |, |W |, |G|, and |C|.

Proof. The crucial fact to keep in mind throughout this proof is that the total number of config-
urations is LT (m) ≤ (m+ 1)ST . Since we have fixed a signature in advance, ST is viewed as a
constant. Thus LT (m) is polynomial in m. Similarly, |W | = O(m · log2(ST )) = O(m), so we
find that LT (m) is polynomial in |W |.

The algorithm works the same as the determinized algorithm in the proof of Theorem 6.3.
The size of the reachability tree is polynomial in LT (m). Thus the number of steps is polyno-
mial in |W |. Since we assume that each of T , G and C run in polynomial time (with respect to
|W |), the whole algorithm now runs in polynomial time with respect to the size of the four input
parameters.

Theorem 6.6 Let Σ be a fixed finite signature (consisting of a finite number of predicate symbols
with their arity and of a finite number of constants).
Then there is an algorithm βΣ applicable to the following inputs:
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(i) a program T which recognizes, in polynomial time, the actions of a local state transition
system T with actions RT ,

(ii) an initial configuration W ,

(iii) a program G which recognizes, in polynomial time, global configurations which contain at
least one of the partial goals Z1, . . . , Zk,

(iv) a program C which recognizes, in polynomial time, global configurations which contain at
least one of the critical configurations which violate a policy

which behaves as follows:

(a) If there is a compliant plan leading from W to one of the goal configurations Z1, . . . , Zk,
then it outputs the plan, otherwise it outputs “no”.

(b) It runs in polynomial time with respect to |T |, |W |, |G|, and |C|.

Proof: This algorithm works the same as the determinized algorithm in the proof of Theorem 6.4.
Since the reachability tree is polynomial in LT (m) which is polynomial in |W |, we can conclude
that the whole algorithm runs in polynomial time with respect to the size of the four input pa-
rameters.

7 Related Work

Our formalism shares a lot of similarities with the Multiset Rewriting formalism (MSR) pre-
sented in [?, ?], which is a notable example of the use of state transition systems. One key
difference with our work is in the treatment of the adversary. In the context of collaboration each
participant views all the others as potential colluding adversaries. In particular, the representation
of security protocols in the MSR formalism [?] assumes that honest participants act deterministi-
cally and are computationally very limited, while the adversary has unbounded memory and can
act nondeterministically. Here, each participant can make use of nondeterminism, and we place
no fixed bound on the memory of the participants.

Although there is no fixed bound on the agents’ memory, using well-balanced actions im-
poses an implicit bound on their memory. It is possible that this notion of bound could be
modeled directly in MSR by encoding as many sessions of the protocol as necessary for a single
agent, thus given the agent as much memory as desired up to an arbitrary bound.

Complexity results are known for many types of Petri nets with various restrictions [?].
In [?, ?] we demonstrated formal translations between the coverability problem for Petri nets and
the reachability problem for local state transition systems. Under our translation, well-balanced
local state transition systems do not seem to correspond exactly to any of the various types of
Petri nets described in [?].
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Our focus on data flow which violates a confidentiality policy is somewhat reminiscent of
other information flow formalisms such as [?, ?, ?, ?]. These formalisms tend to focus on the
trace of an execution which is observable to a (usually passive) adversary. Confidentiality leaks
occur in these formalisms when the adversary can successfully determine (through implicit in-
ference) the initial assignment to some variable. This differs from our state-based approach in
which the agents’ actions are explicitly modeled.

There has been other work on privacy in settings where data sharing is inevitable. One
formalism, Contextual Integrity (CI) [?, ?], is a philosophical framework which views privacy as
a right to the appropriate flow of information. In order to determine what is appropriate, several
parameters such as contexts, roles, attributes, and transmission principles are considered. CI has
a formal instantiation which has its foundation in temporal logic allowing it to express notions of
time which are crucial for the instantiation of the philosophical framework. It may be possible
to map our formalism onto a fragment of the CI formalism in certain types of scenarios.

On the more applied side of the scale, there are numerous works about how to achieve con-
fidentiality in specific settings such as scientific data sharing [?, ?], and the controlled release of
medical information [?]. Additionally, there is work analyzing the privacy loss of specific dis-
tributed constraint optimization algorithms [?, ?]. These approaches tend to address particular
details of the situation in question, and therefore lack the abstractness necessary for capturing a
wide range of scenarios. However, both of [?, ?] apply general metrics for privacy to collabo-
rative scheduling algorithms. Our formalism currently lacks a way of quantifying the interplay
between confidentiality and goal reachability.

8 Conclusion and Future Work

In this paper we have presented an abstract model for collaboration which addresses the inher-
ently competing notions of protecting and releasing resources. We have discussed what it means
to generate a collaborative plan and maintain the participants’ confidentiality of information or
resources relative to a data confidentiality policy. We have demonstrated the logical foundation
of our approach with a translation into affine logic which relates the existence of a collaborative
plan to derivability. We have shown that deciding the existence of a well-balanced collaborative
plan with both system compliance and plan compliance is PSPACE-complete. We saw that by
fixing in advance the number of constants and predicates, these problems are solvable in polyno-
mial time.

Currently we have considered systems with a finite signature that remains unchanged through-
out an execution. In practice, agents are continually creating and destroying values. We would
like to consider ways to model the generation of fresh values. This would be appropriate when,
for example, creating new passwords. The ability to create new values leads naturally to a more
thorough investigation of our formalism’s ability to distinguish between current and obsolete
knowledge. Can our notion of confidentiality policy easily accommodate this distinction?

While data confidentiality policies specify where certain data may or may not go, it does not
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explicitly specify rules of transmitting the data. For example, the results of some medical tests
may be known by both the doctor and the nurse, but only the doctor is allowed to pass the results
on to the patient. We hope to integrate this type of information flow policy into our work. Such
policies may also provide us with the ability to trace information leaks back to their source. This
would provide a sort of auditing mechanism.

The interplay between confidentiality and goal reachability suggests agents who make ra-
tional trade-offs between the two. We may be able to gain more insight into the situation by
enriching our formalism with an explicit notion of rationality. We would like to consider such
“rational adversaries” both in contrast to and in combination with malicious adversaries.

It would be interesting to see how our worst-case complexity results actually manifest on real
examples. It would be useful to have an implementation of the algorithms that would allow us to
explore more realistic complexity results.

This work and all the suggestions for future work can also be put into a synchronous context
in which there is an explicit notion of time. The existence of such a global clock may affect the
properties of systems in interesting ways.
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A Some Rules of Affine Logic

Structural rules

id
Γ;A1, . . . , An ` Ai

Γ, A; ∆, A ` C
clone

Γ, A; ∆ ` C

Cut rules

Γ; ∆1 ` A Γ; ∆2, A ` C cut
Γ; ∆1,∆2 ` C

Γ; · ` A Γ, A; ∆ ` C
cut!

Γ; ∆ ` C

Left rules Right rules

Γ; ∆ ` C
1`

Γ; ∆, 1 ` C
1r

Γ; · ` 1

Γ; ∆, A1, A2 ` C ⊗`
Γ; ∆, A1 ⊗A2 ` C

Γ; ∆1 ` C1 Γ; ∆2 ` C2 ⊗r
Γ; ∆1,∆2 ` C1 ⊗ C2

Γ; ∆1 ` A Γ; ∆2, B ` C
( `

Γ; ∆1,∆2, A( B ` C
Γ; ∆, A ` C

( r
Γ; ∆ ` A( C

Γ; ∆, A ` C
∃`

Γ,∆,∃x.A ` C
Γ; ∆ ` [t/x]C

∃r
Γ; ∆ ` ∃x.C
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