
Continuous Verification for Cryptographic Protocol
Development

Andres Molina-Markham
The MITRE Corporation

a.mm@mitre.org

Paul D. Rowe
The MITRE Corporation

prowe@mitre.org

ABSTRACT
The proliferation of connected devices has motivated a surge in the
development of cryptographic protocols to support a diversity of
devices and use cases. To address this trend, we propose continu-
ous verification, a methodology for secure cryptographic protocol
design that consists of three principles: (1) repeated use of verifica-
tion tools; (2) judicious use of common message components; and
(3) inclusion of verifiable model specifications in standards. Our
recommendations are derived from previous work in the formal
methods community, as well as from our past experiences apply-
ing verification tools to improve standards. Through a case study
of IETF protocols for the IoT, we illustrate the power of continu-
ous verification by (i) discovering flaws in the protocols using the
Cryptographic Protocol Shapes Analyzer (CPSA); (ii) identifying
the corresponding fixes based on the feedback provided by CPSA;
and (iii) demonstrating that verifiable models can be intuitive, con-
cise and suitable for inclusion in standards to enable third-party
verification and future modifications.

CCS CONCEPTS
• Security and privacy→ Security protocols;

KEYWORDS
Cryptographic protocols, verification, IoT

ACM Reference Format:
Andres Molina-Markham and Paul D. Rowe. 2017. Continuous Verification
for Cryptographic Protocol Development. In Proceedings of ACM Work-
shop on the Internet of Safe Things, Delft, Netherlands, November 5 2017
(SafeThings’17), 6 pages.
https://doi.org/10.1145/3137003.3137006

1 INTRODUCTION
The Internet Society estimates that 100 billion interconnected de-
vices will be in existence by 2025 [27]. This proliferation of devices
with varying constraints and use cases has caused a dramatic in-
crease in the variety of communication patterns to accommodate
new relationships among devices. There has been a correspond-
ing increase in the diversity of cryptographic protocols used to

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
SafeThings’17, November 5 2017, Delft, Netherlands
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5545-2/17/11. . . $15.00
https://doi.org/10.1145/3137003.3137006

secure these communications. Unfortunately, designing crypto-
graphic protocols is challenging because the security guarantees of
a cryptographic protocol depend on subtle assumptions.

Typically, designers of protocols rely on expert opinion from
individuals in industry and academia to ensure their cryptographic
protocols achieve the desired security goals. In the best cases—such
as for TLS 1.3—teams of researchers subject a protocol to intense,
formal scrutiny before publication and deployment, proving that it
meets its goals, or finding and fixing an attack in the process [36].
This requires a good deal of time and attention from protocol design
experts. Most protocols for Internet of Things (IoT) are unlikely to
be subjected to such expert scrutiny. There are simply not enough
experts to scale with the growth of IoT. There is thus a need to help
developers design secure IoT protocols on their own.

Fortunately, mechanized verification tools for cryptographic pro-
tocols have made great strides in the past few years. Numerous
tools are freely available to download and use [12, 14, 29, 32, 37].
These tools effectively mechanize important expertise, making it
available to novice users. In this paper, we demonstrate the im-
portance and value of incorporating such tools directly into the
protocol development process. Drawing on our own past experi-
ence with applying tools to the analysis of proposed standards, and
extracting conclusions from the literature on formal methods for
cryptographic protocol design, we propose a methodology of con-
tinuous verification for cryptographic protocol development based
on three core principles.

(1) Use verification tools repeatedly while developing the proto-
col to discover and fix potential attacks.

(2) Common message components are desirable for uniformity,
but must be adapted to guard against sub-protocol interac-
tions.

(3) Published specifications should include intuitive but formal
models with rigorous semantics that connect to tools.

We illustrate continuous verification with a case study out of
the Internet Engineering Task Force (IETF). The reader can find
additional supporting analyses at: https://github.com/mitre/cpsa/.

We applied CPSA [37] to Fluffy: Simple Key Exchange for Con-
strained Environments [22], a draft standard which adapts the key
management mechanisms of Kerberos [34] into several protocols
suitable for IoT. We discovered that several of the protocols did not
achieve their goals, which supports our first recommendation.

Supporting our second recommendation, we note that if the au-
thors of the draft had had the feedback provided by CPSA during
the earlier stages of development, they would have quickly realized
that the use of common message components could introduce at-
tacks. The formal methods community has developed engineering
best practices for cryptographic protocols that can help prevent
attacks arising from message component reuse [5, 20]. We modified

https://doi.org/10.1145/3137003.3137006
https://doi.org/10.1145/3137003.3137006
https://github.com/mitre/cpsa/

SafeThings’17, November 5 2017, Delft, Netherlands A. Molina-Markham et al.

the design of Fluffy to account for more careful reuse of common
message components, and verified with CPSA that the protocols
could now achieve their security goals.

Our third recommendation is based on the observation that the
existence of a verifiable model makes it quite easy to test hypotheses
about the effects of alterations to the protocol design. In this way,
verification tools may be used in a manner analogous to debuggers
for software engineering. As we demonstrate, formal, verifiable
models can have intuitive and easy-to-read descriptions. This sug-
gests that such models are indeed suitable for inclusion in published
protocol specifications. Their inclusion would allow independent
parties to verify security claims. It would also provide a useful start-
ing point for future developers wishing to modify the structures of
a protocol to accommodate a different set of constraints.

2 CHALLENGES
There are more than several dozen IoT-related organizations and
standards bodies [6], even more if we include organizations such as
the Bluetooth Special Interest Group [8], the Zigbee Alliance [45],
the Z-Wave Alliance [44], and others. This diversity reflects the
heterogeneous nature of the stakeholders and use cases for IoT
technologies. This section outlines how this trend impacts the de-
velopment of cryptographic protocols.

Protocol diversity. In view of the diverse set of applications and
stakeholders, it is likely that the number of cryptographic protocols
will continue to surge, as we have seen over the last few years [40].
This trend is consistent with one of Saltzer and Kaashoek’s system
design principles: “Avoid excessive generality” [41]. Reinfurt et al.
proposed design patterns for the IoT to address the increasing com-
plexity of IoT deployments [38]. However, the authors recognize
that they have identified other candidate patterns and that more
will be found over time.

Modification of existing protocols. Some novel cases (e.g.,
private service discovery and private mutual authentication) re-
quire the development of new protocols [43]. However, in many
cases, designers develop new cryptographic protocols by perform-
ing minor modifications to existing protocols to accommodate spe-
cial constraints (e.g., connectivity or power consumption). Small
changes to cryptographic protocols can significantly impact their
security, as we demonstrate in section § 4.3.

Protocols with multiple flows and options. Specifications
of cryptographic protocols often describe multiple related protocol
flows and options to accommodate diverse scenarios. This practice
has two important consequences: (1) Use of common data structures:
Protocol specifications use common data structures or building
blocks to facilitate the presentation and implementation of the vari-
ous protocols. Section § 4.3 gives a concrete example of this use of
building blocks; (2) Detachment of assumptions and protocol flows:
With the objective of being flexible, some protocols specify multiple
flows with different security implications. Often, the assumptions
for different flows are not explicit. Section § 4.2 describes the secu-
rity implications in the context of a specific set of protocols.

Rapid development. New protocols are typically motivated
by concrete use cases related to specific products that a company
would like to bring to market with aggressive development cycles.
This implies that protocols, especially those that result from minor

modifications to existing protocols, may not always be thoroughly
reviewed by cryptographic protocol design experts. This speaks to
the need to integrate the use of protocol verification tools through-
out the development life-cycle.

3 CONTINUOUS VERIFICATION
Motivated by the trends that we describe in § 2, this section out-
lines key principles for the development of cryptographic protocol
specifications that would result in more secure protocols. These
principles are especially relevant when protocol designers do not
have access to an in-house team of experts to analyze their pro-
tocols. Instead, designers rely on the community at large to help
them verify the security of protocols. Concretely, we propose the
following principles for the design of cryptographic protocols.

Systematically use verification tools. The idea of using ver-
ification tools for the development of cryptographic protocols is
not new [3, 7, 37]. However, we argue that cryptographic protocols
that are designed for practical use must be formally verified.

Moreover, cryptographic protocol designers should not restrict
the use of verification tools to the later stages of the development
process. Verification tools should be used at early stages and re-
peatedly throughout the design process. The output of verification
tools, such as CPSA [37], offers intuition (usually within seconds)
that can help to identify issues and possible solutions. Verification
tools can help designers in a similar way to how compilers and
debuggers help programmers. Programmers do not use compilers
and debuggers only at the later stages of the development process.
Increasingly, compilers provide recommendations to programmers
to improve code, based on amassed knowledge from a large number
of experts over time.

This paper provides several concrete examples of how the use of
verification tools helps to identify issues. For example, through the
use of CPSA, we identified a problem with the use of the authen-
ticator, a message component used in Kerberos [34] and adapted
for use in several of Fluffy’s protocols [22]. CPSA’s visual and in-
tuitive output also hinted at a potential way to fix the issue. A
protocol designer can, just as a programmer would, implement a
fix to this authenticator, and get immediate verification feedback,
as we describe in more detail in § 4.3.

Use commonmessage components judiciously. A common
trend is to describe protocols with a variety of flows and options
often within the same standards specification. As a result, a family
of protocols may be described using messages with common com-
ponents. For example, the draft of Fluffy [22] describes messages
of various protocols using minitickets, receipts, authenticators and
acknowledgements. These components are combined in messages
for various flows in slightly different ways. This practice makes
it difficult to reason about the implications of modifying a single
component with respect to the security of several protocols.

Relying on the systematic use of verification tools can mitigate
the issues. However, we note that we need to perform more re-
search to clearly define a relationship between the goals of message
components and the security goals of a cryptographic protocol. We
describe this topic in further detail in § 5. Until this relation is well
understood, we advocate for the careful use of message compo-
nents when describing multiple related protocols. In particular, we

Continuous Verification for Cryptographic Protocol Development SafeThings’17, November 5 2017, Delft, Netherlands

recommend minimizing the number of purposes and distinct uses
of such common message components. Using a common compo-
nent in multiple protocols for different purposes entangles such
protocols and, therefore, adds complexity. For example, if a message
component has a parameter or field which is used differently in
multiple flows, this is a sign of dangerous entanglement.

Include verifiable specifications in drafts. It is difficult to
use natural language to describe cryptographic protocols. A spec-
ification of a cryptographic protocol must be unambiguous. This
has motivated the development of multiple domain-specific lan-
guages with precise syntax and semantics. Furthermore, some of
these languages allow for specifications that can be formally veri-
fied [3, 7, 37].

Including verifiable specifications in standards drafts or similar
core specification documents can be extremely beneficial [9, 21]. A
verifiable specification: (1) provides evidence that a protocol has
been subject to formal verification; (2) allows others to validate
security analyses; (3) enables others to perform modifications to
protocols that they can verify; (4) disambiguates assumptions and
formalizes statements that can be inadequately described using
natural language.

Standards organizations, such as the IETF, embrace notions re-
lated to collective wisdom and specifications with demonstrable
utility: “We reject kings, presidents and voting. We believe in rough
consensus and running code"—David Clark [24].

Other organizations, such as the Open Connectivity Founda-
tion [35], sponsor projects that develop reference implementa-
tions [1]. In the case of cryptographic protocols, verifiable speci-
fications are at least as important as “running code." We view the
inclusion of protocol models as analogous to reference implementa-
tions. While the latter are aimed at those implementing the protocol,
the former would be aimed at those evaluating protocol security.

4 PRACTICAL CONTINUOUS VERIFICATION
This section illustrates how continuous verification assists the design
of cryptographic protocols for the IoT. Concretely, we describe how
we can improve Fluffy: Simplified Key Exchange for Constrained En-
vironments [22], a set of protocols for the IoT based on Kerberos [34].
We use CPSA for the specification and the verification of the proto-
cols. We discuss how two of the protocols, which may look similar,
are substantially different, despite involving similar parties, and
sharing common message components or common building blocks.
The use of one building block—the authenticator—is adequate in
one protocol, but it is not adequate in another one.

We describe an attack and a fix, both discovered with the use
of CPSA, which is a mature verification tool with strong formal
foundations that aims to be simple and intuitive. Finally, we de-
scribe how these protocols can be unambiguously described using
CPSA S-expressions. These can be formally verified and have intu-
itive representations that can be complemented with automatically
generated diagrams.

4.1 Fluffy: Simplified Key Exchange for
Constrained Environments

Fluffy is a set of key exchange protocols that aim to simplify Ker-
beros for use in constrained environments [22], such as those that

Gerdes et al. describe in RFC 7744 [16]. The draft of Fluffy that we
analyzed describes five protocols:

• Pair-wise shared key establishment (PSKE)
• Group shared key establishment (GSKE)
• Public key pair establishment (PKPE)
• PSKE key deletion
• GSKE key deletion

The protocols involve devices participating in one of three roles:
a client, a service principal (SP), or a simple key distribution center
(SKDC). By design, a device can take multiple roles to accommodate
situations in which devices have several purposes or are shared by
many individuals, for example1.

The draft of Fluffy describes these protocols using seven com-
mon data structures termed common building blocks: SKDC request
body, miniticket, receipt, authenticator, acknowledgement, key data,
key envelope. The first five are based on data structures introduced
by Kerberos [34], while the last two are new. For example, the mini-
ticket is designed to be functionally equivalent to Kerberos’ service
ticket; the receipt to be functionally equivalent to Kerberos’ SKDC-
Response; and, the authenticator to be functionally equivalent to
Kerberos’ authenticator.

Our goal is to illustrate how the use of the key cryptographic
protocol principles that we described in § 3 can help to design more
secure protocols. Fluffy suggests several sensible design changes
that indeed simplify Kerberos. However, we show it is possible to
introduce side effects when modifying an existing protocol.

Pair-wise Shared Key Establishment. The purpose of the
PSKE protocol is to enable a client to request from an SKDC the
creation of a shared key to communicate securely with a service
principal (SP). PSKE’s flow involves four messages. In order to
simplify the presentation of this paper, we omit some parts of the
messages that are irrelevant to the security analysis. For example,
we omit optional or informational fields. The readers can find the
analysis with all the fields in the draft in our repository.

The client includes an authenticator in its messages to the SKDC
and the SP, which cryptographically protects the client’s identity
and a nonce, in addition to a key shared with the expected recipient.
The SKDC’s response to the client’s request includes a miniticket
and a receipt. The miniticket includes the identities of the SKDC,
and the SP, together with a cryptographically protected tuple that
contains the identity of the client and the newly generated key.
This tuple is encrypted with a key shared between the SKDC and
the SP. This miniticket is then relayed by the client in message 3.
The receipt cryptographically protects a tuple with the key shared
between the SKDC and the client. The tuple in the receipt contains
the identities of the SKDC, the SP, the nonce generated by the client
in the first message, and the requested key. After the SP verifies
the message with the miniticket and the second authenticator, it
responds with an acknowledgement, which cryptographically pro-
tects a tuple with the newly exchanged key. The acknowledgment
includes the identities of the client and the SP, and the second nonce
generated by the client.

A CPSA analysis of this protocol shows that this protocol does
not have security flaws. However, as we discuss in § 4.3, CPSA’s
output for PSKE and GSKE motivated a change in the authenticator.
1RFC 7744 [16] provides rationale for multi-role devices.

SafeThings’17, November 5 2017, Delft, Netherlands A. Molina-Markham et al.

B as SP S as SKDC A as Client

•

��

S,G, { |B,NB | }KSB

GSKE-Request
// •

��
• •

��

B, { |S,G,NB,K | }KSB

GSKE-Response
oo

•

��

•

��

S,G, { |A,NA | }KSA

GSKE-Fetch
oo

•
A, { |S,G,NA,K | }KSA

GSKE-Deliver
// •

Figure 1: GSKE. B (SP) requests a group keyK from S (SKDC).
The request includes an authenticator with a nonce NB . The
SKDC responds with a message that contains a receipt with
the group key protected with the long-term shared key KSB
between S and B. Subsequently, a client A fetches the group
keyK from the SKDC. The response from the SKDC includes
a receipt with the group key, protected with the long-term
key KSA shared between S and A. {|d |}K denotes that d is en-
crypted with K . Vertical arrows⇒ denote immediate causal
precedence in the strand space formalism [15].

This change simultaneously fixes a security issue in GSKE and
also improves PSKE eliminating unsuccessful runs of the protocol
that do not result in security vulnerabilities but that would require
implementations to handle awkward cases.

Group Shared Key Establishment. GSKE is meant to enable
an SP to request a group key from the SKDC. This group key would
then be shared with multiple clients to allow for communication
with group authenticity. As we illustrate in Figure 1, the SP is sup-
posed to request the creation of the group key. After the SKDC
creates the group key and shares it with the SP, clients can re-
quest a copy of the key. The flows between the SP and the SKDC
(the request), and between the client and the SKDC (the fetch), are
nearly identical. The difference is in the type of message (e.g. GSKE-
Request vs GSKE-Fetch), which is itself part of the message and
declared by the sender. The authenticator and the receipt are sup-
posed to ensure the security of the protocol. However, we verified
the protocol with CPSA, which identified several shapes (possi-
ble protocol runs) that highlighted inconsistencies (these can be
thought of as “warnings") that often result in possible attacks. In
this case, CPSA’s output diagrams highlighted several abnormal
shapes (e.g., GSKE enables runs where the client’s flow precedes
the SP’s flow).

4.2 Stealing Group Ownership
When an SP requests the generation of a group key, the SP becomes
the owner of the group. Group ownership gives an entity important
capabilities. Fluffy specifies that only the SKDC and the group
owner can request the deletion of the corresponding key. In addition,
depending on the authorization policies used in combination with
Fluffy, the group owner may control group membership.

Abnormal shapes illustrate an issue with GSKE, namely, that
the message types are not protected, and therefore, an attacker

B as SP A S as SKDC

•

��

S,G, { |B,NB | }KSB

GSK-Request
// •

��
•

��

S,G, { |A,NA | }KSA

GSK-Request
// •

������
•

��

•

����

A, { |S,G,NA,K | }KSA

GSK-Response
oo

•

��

S,G, { |B,NB | }KSB

GSK-Fetch
// •

��
•

��

•
B, { |S,G,NB,K | }KSB

GSK-Deliver
oo

• •
B, { |S,G,NB,K | }KSB

GSK-Response
oo

Figure 2: A malicious party A intercepts the request from B,
and creates a request to hijack the ownership of the group.

A can intercept and modify the message types to steal the group
membership, for example with a flow such as the one in Figure 2.

To illustrate the security implications, consider the following
home automation scenario (related to one of the representative
use cases described in RFC 7744 [16]): In today’s smart homes, a
variety of devices are connected through a router or hub. Devices,
such as smart light bulbs, wall switches, connected door locks or
entertainment systems (e.g., Apple TV or Roku), are all potentially
connected via a single wireless router. A conventional approach
for restricting communication among devices relies on the ability
to ensure group-authenticity, as defined in RFC 3740 [23].

For example, Alice—a home owner—expects that only a subset
of her devices control the door lock (i.e., a specific app on her
smartphone and a door keypad). On the other hand, Alice also has
a $35 screencast device that allows visitors to display content on
her living room screen. Alice likes that visitors simply need to “tap”
on Alice’s hub to establish a link between visitors’ smartphones
and the screencast device.

Alice’s hub implements an SKDC; the door lock and the screen-
cast are service principals, and the door keypads and smartphones
are clients for the corresponding services or applications. The au-
thorization policies enforced by Alice’s hub are very simple and
rely on group membership. In particular, the policies state that (1)
only specific door keypads and specific instances of a smartphone
app can join groups created by the door lock; on the other hand,
(2) anyone can join groups created by Alice’s screencast. Alice
felt comfortable about adding the inexpensive screencast device
to her network because her hub enforces an additional policy: (3)
the screencast device cannot join any group that the screencast
did not create. Alice (and the designers of her hub) expected that
this third policy would prevent a device like the screencast device
from communicating with any other device in the home (except for
visitors’ smartphones). Therefore, they expected to minimize the
security impacts of adding a device like the screencast. However,
this is not the case. Alice’s screencast might be developed by a com-
promised entity with motivation to allow anyone—without the end
user’s knowledge—to control anything in a smart home where the

Continuous Verification for Cryptographic Protocol Development SafeThings’17, November 5 2017, Delft, Netherlands

rogue device is added. For example, the screencast could intercept
requests from the door lock when it attempts to create a group
key. Subsequently, using the flow that we described, the screencast
would steal the ownership of the group. Therefore, policy (2) would
apply and policy (3) would fail to be enforced.

4.3 Verifiable Specifications
We argue that verification technologies can improve the specifi-
cation process. Unambiguous and verifiable specifications, such
as those used by CPSA [33], can be easy for humans to read. For
example, the snippet in Figure 3 illustrates a specification of GSKE
that includes a fixed authenticator2. Importantly, protocol fixes can
be verified by others. For example, a new version of GSKE that
applies the fix has exactly one shape from the point of view of each
of the three entities. This shape corresponds to the intended run
of the protocol. Also, when a family of protocols uses common
building blocks, it is important to check that all of the relevant
protocols remain secure after a modification. In this case, the fix to
the authenticator also reduces the number of shapes of the PSKE
protocol3.

(herald "Fixed Group Shared Key Establishment")
(defprotocol fluffy basic
(defrole sp
(vars (b s name) (nb g text) (gk skey))
(trace
(send (cat "req" s g
(enc (hash (cat "req" s g)) b nb (ltk s b))))

(recv (cat "resp" b (enc s g nb gk (ltk s b))))))
(defrole keyserv
(vars (a b s name) (nb na g text) (gk skey))
(trace
(recv (cat "req" s g
(enc (hash (cat "req" s g)) b nb (ltk s b))))

(send (cat "resp" b (enc s g nb gk (ltk s b))))
(recv (cat "fetch" s g
(enc (hash (cat "fetch" s g)) a na (ltk s a))))

(send (cat "deliver" a (enc s g na gk (ltk s a)))))
(uniq-gen gk))

(defrole client
(vars (a b s name) (na g text) (gk skey))
(trace
(send (cat "fetch" s g
(enc (hash (cat "fetch" s g)) a na (ltk s a))))

(recv (cat "deliver" a (enc s g na gk (ltk s a)))))))

Figure 3: Fixed GSKE.

5 CONCLUDING THOUGHTS
We proposed a continuous verification methodology for crypto-
graphic protocol design. Nevertheless, this methodology presents
new challenges that may stimulate research.

The first key principle for continuous verification is the system-
atic use of verification tools. However, it has been difficult to foster
adoption of such tools by practitioners who author cryptographic
protocol specifications and standards. A more common model has

2The analysis of Fluffy suggested the source of the problem. Message types are not
tied to identities. This can be easily fixed by adding one field to the authenticator: a
hash of the message, not including the authenticator.
3We refer the reader to our repository that includes a specification of the improved
PSKE.

been to elicit analyses before release from academics who are ex-
perts in verification methods and tools (see, e.g., [5, 10, 11, 31]). This
has typically followed the “reactive” verification model of design-
release-break-patch [36], although the development of TLS 1.3 in
the IETF has followed a more promising “proactive” verification
model of design-break-fix-release. The approach taken for TLS 1.3
may be appropriate for high-profile protocols, but most protocols
are not likely to garner the necessary attention from the verification
experts who know how to apply the tools.

It is natural to ask why a more continuous verification method
has not emerged in practice. We speculate that it stems from three
main causes: (1) effective tool use has traditionally required ex-
perts in verification, (2) experts’ time and focus are commodities
in scarce supply, and (3) there are no norms of usage within the
governing standards bodies and consortia. There is little to be done
about (2). Academics have a high incentive to work on problems
with publishable results. There is often little value in publishing
the result of an analysis that does not reveal any attacks. As for the
other two causes, researchers and practitioners will likely have to
work together to address them. We believe it is more effective to
train practitioners to use tools than to simply provide them with
the results of analysis.

We believe the secondmain principle of continuous verification—
the inclusion of verifiable models in protocol standards—will be an
important aspect in establishing norms of use. This principle comes
with its own set of challenges. To start, the primary consumers of
most standards have traditionally been developers aiming to ensure
the results of their development activities can inter-operate with
others. A verifiable protocol model does not support this purpose,
and so there is likely to be resistance to its inclusion.

The framework described in [30] and standardized by the ISO/IEC
in [26] lays the groundwork for including a protocol specification,
an adversary model, the claimed security properties against the
given adversary, and verification evidence (such as tool outputs)
that support the security claims. However, it highlights some im-
portant technical challenges. There is no commonly agreed upon
description language for protocols that can support rigorous ver-
ification. Each tool has its own input language, and while many
features of these languages overlap, they differ in subtle ways that
might affect the end results. Also, there may be important differ-
ences in the specification language of security properties and the
underlying adversary models. Research has aimed at addressing
cross-tool specification and analysis (e.g. [2, 4, 19, 39]), but more
work remains.

Finally, the third principle of continuous verification—judicious
use of common building blocks—may be difficult to implement be-
cause there are few hard and fast rules for what constitutes “safe”
usage of building blocks. By reusing common structures, the dan-
gers of adverse protocol interactions become relevant [28]. One
can think of the common building block as a sub-protocol with
its own goals that is embedded into several larger protocols. Re-
search has identified design principles that help to ensure a sub-
protocol’s goals are not subverted by the larger protocol it interacts
with [5, 17, 20]. For example, by adding informative data strings to
cryptographic units, and by ensuring the same key is never used
for two different purposes, many of the pitfalls of protocol inter-
actions can be avoided. Indeed, the weaknesses we discovered in

SafeThings’17, November 5 2017, Delft, Netherlands A. Molina-Markham et al.

Fluffy could easily be addressed by including in each building block
a string identifying which sub-protocol and step it pertains to. A
related line of research has investigated safe transformations or
refinements of protocols to allow for the adaptation of common
structures for new purposes without invalidating the security prop-
erties achieved by those structures [13, 18, 25, 42].

6 ACKNOWLEDGEMENTS
We thank Thomas Hardjono and Ned Smith, the authors of the
Fluffy draft, for their openness, and commitment to ensuring the
security of Fluffy. We also thank Joshua D. Guttman and John D.
Ramsdell for their feedback on this work4.

REFERENCES
[1] 2017. About | IoTivity. (2017). https://www.iotivity.org/about
[2] Omar Almousa, Sebastian Mödersheim, and Luca Viganò. 2015. Alice and Bob:

Reconciling Formal Models and Implementation. In Programming Languages with
Applications to Biology and Security - Essays Dedicated to Pierpaolo Degano on the
Occasion of His 65th Birthday. 66–85.

[3] David Basin, Jannik Dreier, and Ralf Sasse. 2015. Automated symbolic proofs of
observational equivalence. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 1144–1155.

[4] David A. Basin and Cas Cremers. 2014. Know Your Enemy: Compromising
Adversaries in Protocol Analysis. ACM Trans. Inf. Syst. Secur. 17, 2 (2014), 7:1–
7:31.

[5] David A. Basin, Cas Cremers, and Simon Meier. 2013. Provably repairing the
ISO/IEC 9798 standard for entity authentication. Journal of Computer Security
21, 6 (2013), 817–846.

[6] Joachim Bauernberger. 2016. An incomplete List of Organizations and Alliances
for the Internet of Things. (March 2016). https://www.linkedin.com/pulse/
incomplete-list-organizations-alliances-internet-joachim-bauernberger

[7] Bruno Blanchet. 2014. Automatic Verification of Security Protocols in the Sym-
bolic Model: the Verifier ProVerif. In Foundations of Security Analysis and Design
VII, FOSAD Tutorial Lectures, Alessandro Aldini, Javier Lopez, and FabioMartinelli
(Eds.). Lecture Notes in Computer Science, Vol. 8604. Springer, 54–87.

[8] Bluetooth. 2017. Volunteer With The Sig | Bluetooth Technology Web-
site. (2017). https://www.bluetooth.com/membership-working-groups/
volunteer-with-the-sig

[9] Jonathan Bowen and Victoria Stavridou. 1993. Safety-critical systems, formal
methods and standards. Software Engineering Journal 8, 4 (1993), 189–209.

[10] Iliano Cervesato, Aaron D. Jaggard, Andre Scedrov, Joe-Kai Tsay, and Christopher
Walstad. 2008. Breaking and fixing public-key Kerberos. Inf. Comput. 206, 2-4
(2008), 402–424.

[11] Cas Cremers. 2011. Key exchange in IPsec revisited: Formal analysis of IKEv1
and IKEv2. In Computer Security–ESORICS 2011. Springer.

[12] Cas Cremers and Sjouke Mauw. 2012. Operational semantics and verification of
security protocols. Springer Science & Business Media.

[13] Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic. 2004. Ab-
straction and Refinement in Protocol Derivation. In 17th IEEE Computer Security
Foundations Workshop, (CSFW-17 2004), 28-30 June 2004, Pacific Grove, CA, USA.
30.

[14] Santiago Escobar, Catherine Meadows, and José Meseguer. 2009. Maude-NPA:
Cryptographic protocol analysis modulo equational properties. In Foundations of
Security Analysis and Design V. Springer, 1–50.

[15] THAYER Fábrega, F Javier, Jonathan C Herzog, and Joshua D Guttman. 1999.
Strand spaces: Proving security protocols correct. Journal of computer security 7,
2-3 (1999), 191–230.

[16] Stefanie Gerdes, Ludwig Seitz, Goran Selander, Mehdi Mani, and Sandeep Kumar.
2016. Use Cases for Authentication and Authorization in Constrained Environments.
RFC RFC7744. IETF.

[17] Thomas Groß and Sebastian Mödersheim. 2011. Vertical Protocol Composition.
In Proceedings of the 24th IEEE Computer Security Foundations Symposium, CSF
2011, Cernay-la-Ville, France, 27-29 June, 2011. 235–250.

[18] Joshua D. Guttman. 2014. Establishing and preserving protocol security goals.
Journal of Computer Security 22, 2 (2014), 203–267.

4Approved for Public Release; Distribution Unlimited. Case Number 17-2780. Technical
data was produced for the U.S. Government under Contract. No. W15P7T-13-C-A802,
and is subject to the Rights in Technical Data-Noncommercial Items clause at DFARS
252.227-7013 (FEB 2012).

[19] Joshua D. Guttman, John D. Ramsdell, and Paul D. Rowe. 2016. Cross-Tool Se-
mantics for Protocol Security Goals. Springer, 32–61. https://doi.org/10.1007/
978-3-319-49100-4_2

[20] Joshua D. Guttman and F. Javier Thayer. 2000. Protocol Independence through
Disjoint Encryption. In Proceedings of the 13th IEEE Computer Security Foundations
Workshop, CSFW ’00, Cambridge, England, UK, July 3-5, 2000. 24–34.

[21] Anthony Hall. 1990. Seven myths of formal methods. IEEE software 7, 5 (1990),
11–19.

[22] T Hardjono and N Smith. 2016. Fluffy: Simplified Key Exchange for Constrained
Environments. Technical Report hardjono-ace-fluffy-03. https://datatracker.ietf.
org/doc/rfc7744/

[23] Thomas Hardjono and Brian Weis. 2004. The multicast group security architecture.
RFC RFC 3740. IETF.

[24] Paul Hoffman and Susan Harris. 2006. The Tao of IETF-A Novice’s Guide to the
Internet Engineering Task Force. Technical Report.

[25] Mei Lin Hui and Gavin Lowe. 2001. Fault-Preserving Simplifying Transformations
for Security Protocols. Journal of Computer Security 9, 1/2 (2001), 3–46.

[26] ISO/IEC 2011. 29128: Information Technology - Security techniques — Verification
of Cryptographic Protocols. ISO/IEC.

[27] Karen Rose, Scott Eldridge, and Lyman Chapin. 2017. The Internet of Things: An
Overview, Understanding the Issues and Challenges of a More Connected World.
Technical Report. Internet Society. https://www.internetsociety.org/sites/default/
files/ISOC-IoT-Overview-20151221-en.pdf

[28] John Kelsey, Bruce Schneier, and David A. Wagner. 1997. Protocol Interactions
and the Chosen Protocol Attack. In Security Protocols, 5th International Workshop,
Paris, France, April 7-9, 1997, Proceedings. 91–104.

[29] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. 2017. Automated
verification for secure messaging protocols and their implementations: A sym-
bolic and computational approach. In IEEE European Symposium on Security and
Privacy (EuroS&P).

[30] Shin’ichiro Matsuo, Kunihiko Miyazaki, Akira Otsuka, and David A. Basin. 2010.
How to Evaluate the Security of Real-Life Cryptographic Protocols? - The Cases
of ISO/IEC 29128 and CRYPTREC. In Financial Cryptography and Data Security,
FC 2010Workshops, RLCPS, WECSR, andWLC 2010, Tenerife, Canary Islands, Spain,
January 25-28, 2010, Revised Selected Papers. 182–194.

[31] Catherine Meadows. 1999. Analysis of the Internet Key Exchange Protocol using
the NRL Protocol Analyzer. In Proceedings, 1999 IEEE Symposium on Security and
Privacy. IEEE CS Press.

[32] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. 2013. The
TAMARIN prover for the symbolic analysis of security protocols. In International
Conference on Computer Aided Verification. Springer, 696–701.

[33] MITRE. 2017. cpsa: Cryptographic Protocol Shapes Analyzer. (July 2017). https:
//github.com/mitre/cpsa original-date: 2017-07-11T18:12:14Z.

[34] C Neuman, T Yu, S Hartman, and K Raeburn. 2005. The Kerberos network authenti-
cation service (V5). Standards Track RFC4120. https://www.ietf.org/rfc/rfc4120.txt

[35] OCF. 2017. Open Connectivity Foundation (OCF). (2017). https://
openconnectivity.org/

[36] Kenneth G. Paterson and Thyla van der Merwe. 2016. Reactive and Proactive
Standardisation of TLS. In Security Standardisation Research - Third International
Conference, SSR 2016, Gaithersburg, MD, USA, December 5-6, 2016, Proceedings.
160–186.

[37] John D Ramsdell, Joshua D Guttman, Moses D Liskov, and Paul D Rowe. 2009.
The CPSA Specification: A Reduction System for Searching for Shapes in Cryp-
tographic Protocols. The MITRE Corporation (2009).

[38] Lukas Reinfurt, Uwe Breitenbücher, Michael Falkenthal, Frank Leymann, and
Andreas Riegg. 2016. Internet of Things Patterns. In Proceedings of the 21st
European Conference on Pattern Languages of Programs (EuroPlop ’16). ACM, New
York, NY, USA, 5:1–5:21. https://doi.org/10.1145/3011784.3011789

[39] Paul D. Rowe, Joshua D. Guttman, and Moses D. Liskov. 2016. Measuring protocol
strength with security goals. Int. J. Inf. Sec. 15, 6 (2016), 575–596.

[40] Tara Salman and Raj Jain. 2015. Networking Protocols and Standards for Internet
of Things. Internet of Things and Data Analytics Handbook (2015), 215–238.

[41] Jerome H Saltzer and M Frans Kaashoek. 2009. Principles of computer system
design: an introduction. Morgan Kaufmann.

[42] Christoph Sprenger and David A. Basin. 2010. Developing security protocols
by refinement. In Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, Chicago, Illinois, USA, October 4-8, 2010.
361–374.

[43] David J. Wu, Ankur Taly, Asim Shankar, and Dan Boneh. 2016. Privacy, Discovery,
and Authentication for the Internet of Things. arXiv:1604.06959 [cs] (April 2016).
http://arxiv.org/abs/1604.06959 arXiv: 1604.06959.

[44] Z-Wave. 2017. - The Internet of Things is powered by Z-Wave. (2017). http:
//z-wavealliance.org/

[45] Zigbee. 2017. zigbee alliance. (2017). http://www.zigbee.org/

https://www.iotivity.org/about
https://www.linkedin.com/pulse/incomplete-list-organizations-alliances-internet-joachim-bauernberger
https://www.linkedin.com/pulse/incomplete-list-organizations-alliances-internet-joachim-bauernberger
https://www.bluetooth.com/membership-working-groups/volunteer-with-the-sig
https://www.bluetooth.com/membership-working-groups/volunteer-with-the-sig
https://doi.org/10.1007/978-3-319-49100-4_2
https://doi.org/10.1007/978-3-319-49100-4_2
https://datatracker.ietf.org/doc/rfc7744/
https://datatracker.ietf.org/doc/rfc7744/
https://www.internetsociety.org/sites/default/files/ISOC-IoT-Overview-20151221-en.pdf
https://www.internetsociety.org/sites/default/files/ISOC-IoT-Overview-20151221-en.pdf
https://github.com/mitre/cpsa
https://github.com/mitre/cpsa
https://www.ietf.org/rfc/rfc4120.txt
https://openconnectivity.org/
https://openconnectivity.org/
https://doi.org/10.1145/3011784.3011789
http://arxiv.org/abs/1604.06959
http://z-wavealliance.org/
http://z-wavealliance.org/
http://www.zigbee.org/

	Abstract
	1 Introduction
	2 Challenges
	3 Continuous Verification
	4 Practical Continuous Verification
	4.1 Fluffy: Simplified Key Exchange for Constrained Environments
	4.2 Stealing Group Ownership
	4.3 Verifiable Specifications

	5 Concluding Thoughts
	6 Acknowledgements
	References

