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Abstract. Systems designed with measurement and attestation in mind
are often layered, with the lower layers measuring the layers above them.
Attestations of such systems, which we call layered attestations, must
bundle together the results of a diverse set of application-specific mea-
surements of various parts of the system. Some methods of layered attes-
tation are more trustworthy than others especially in the presence of an
adversary that can dynamically corrupt system components. It is there-
fore important for system designers to understand the trust consequences
of different designs. This paper presents a formal framework for reason-
ing about layered attestations. We identify inference principles based on
the causal effects of dynamic corruption, and we propose a method for
bundling evidence that is robust to such corruptions.

1 Introduction

Security decisions often rely on trust. Many computing architectures have been
designed to help establish the trustworthiness of a system through remote attes-
tation. They gather evidence of the integrity of a target system and report it to a
remote party who appraises the evidence as part of a security decision. A simple
example is a network gateway that requests evidence that a target system has
recently run antivirus software before granting it access to a network. If the virus
scan indicates a potential infection, or does not offer recent evidence, the gate-
way might decide to deny access, or perhaps divert the system to a remediation
network. Of course the antivirus software itself is part of the target system, and
the gateway may require integrity evidence for the antivirus for its own security
decision. This leads to the design of layered systems in which deeper layers are
responsible for generating integrity evidence of the layers above them.

A simple example of a layered system is one that supports “trusted boot” in
which a chain of boot-time integrity evidence is generated for a trusted comput-
ing base that supports the upper layers of the system. A more complex example
might be a virtualized cloud architecture. The virtual machines (VMs) at the
top are supported at a lower layer by a hypervisor or virtual machine monitor.
Such an architecture may be augmented with additional VMs at an intermedi-
ate layer that are responsible for measuring the main VMs to generate integrity
evidence. These designs offer exciting possibilities for remote attestation. They
allow for specialization and diversity of the components involved, tailoring the
capabilities of measurers to their targets, and composing them in novel ways.



An important fact about such layered systems is that the trustworthiness
of the system is not simply a function of the evidence produced by measure-
ment; the relative order of the measurement events is crucial. In particular, a
strong intuition that is manifest in the literature is that it is better to build trust
“bottom-up” by first gathering evidence for components lower in the system be-
fore they measure the higher level components. A measurer is more likely to
be uncorrupted at the time it takes its measurements if this order is respected.
This intuition for “bottom-up” measurement underlies many architectures, most
notably trusted boot [9] and the integrity measurement architecture (IMA) [15].
In a companion paper [14] we characterize the guarantees provided by a bottom-
up measurement scheme in the presence of an adversary that can dynamically
corrupt system components. Namely, if an adversary successfully corrupts a tar-
get component t without being discovered by measurements, then the adversary
must have either performed a recent corruption of one of t’s immediate dependen-
cies, or else the adversary must have corrupted one of t’s indirect dependencies
deeper in the system. Thus bottom-up measurements confine undetectable cor-
ruptions to be either recent or deep. We schematize the main theorem of [14] in
Eqn. (1).

Bottom-up measurement =⇒ Detectable, Recent or Deep (1)

Such a result is not enough, however. Since a remote appraiser cannot di-
rectly observe the order of measurements on a system, this information must be
part of what is conveyed in the bundle of evidence during the attestation. In
order to apply the result, the appraiser needs a way of inferring that the mea-
surements were indeed taken bottom-up. If an adversary could make it look like
measurements were taken in the desired order when they weren’t then he could
avoid the consequences of the theorem.

Much of the work on measurement and attestation relies on a Trusted Plat-
form Module (TPM) to protect and report the evidence generated by measure-
ment components. It is common to invoke the use of a TPM as sufficient for
these purposes. Unfortunately, there are many natural ways to use a TPM that
fail to accurately reflect the order of measurement. The ability of an adversary to
dynamically corrupt components at runtime makes the problem all the more pro-
nounced. This paper begins to address the issues surrounding the use of TPMs
to bundle evidence in the presence of dynamic adversaries. We summarize our
main contributions as follows:

1. We introduce a formalism for reasoning about the causal effects of dynamic
corruption and repair of system components on the process of bundling mea-
surement evidence for attestation using a TPM.

2. We prove correct a set of reusable principles for inferring the structure of
system activity given that a certain structure of bundled evidence was pro-
duced by a TPM. Failure of these principles to prove some desirable property
may indicate that the desirable property was not met.

3. We propose a particular method for using a virtualized TPM to bundle
evidence, and we show (Theorem 5) that under some assumptions about
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the behavior of uncompromised components, a remote appraiser can infer
that either the measurements were taken bottom-up, or else the adversary
performed a recent or deep corruption in the sense described above. Letting
Q denote a set of quotes conforming to our method, we schematize this
theorem in Eq. (2).

Q =⇒ Bottom-up, Recent, or Deep (2)

The first two contributions are quite general, and, we believe, could be ap-
plied to the design and analysis of many systems. The third suggests a particular
design recommendation. It says, roughly, that if our recommendation is followed,
then either the hypothesis of Eq. (1) is satisfied, or else its conclusion is satisfied.
The particular assumptions required might limit its applicability. In particular,
it assumes some flexible access control to TPM registers which is hard to achieve
in physical TPMs. Thus it is naturally applicable to virtualized systems incor-
porating virtualized TPMs (vTPMs) [1] that could allow for such access control.
Although no industry standard currently exists for securing vTPMs, architec-
tural designs and specifications for such systems are beginning to emerge [12,
13, 5, 2].

Paper structure. The rest of the paper is structured as follows. We begin
in Section 2 by reviewing some basic facts about TPMs and introducing some
notation. In Section 3 we build up some intuition about what types of inference
an appraiser is justified in making and what types of problems can arise when
using a TPM to bundle evidence from a layered system. Section 4 contains the
description of our formal model which we will use to justify our intuitions. We
develop our reusable principles and present our bundling strategy in Section 5,
characterizing the guarantees provided by our strategy. We address related work
in Section 6 before concluding.

2 Preliminaries

The results of this paper depend on some features of Trusted Platform Modules
(TPMs). For reasons of space, a full review of the relevant features of TPMs
is impractical. We present here only the most basic explanation of the notions
necessary to proceed.

TPMs are stateful devices with a collection of platform configuration reg-
isters (PCRs) that contain information about the state of the system. These
registers are isolated from the rest of the system and are thus protected from
direct modification. They can only be updated in constrained ways, namely by
extending a register or by resetting it. We explain below how this works. An
additional restriction is imposed by a form of access control known as locality.
This access control ensures that, for certain PCRs, only certain components with
special privileges can extend or reset them. A TPM can also quote the state of
a set of PCRs by emitting a digital signature over the contents of those PCRs.
We will assume the signing key has not been compromised, as it never leaves the
TPM unencrypted.
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In order to describe how the state is updated and reported, we use elements
of a term algebra. Terms are constructed from some base V of atomic terms
using constructors in a signature Σ. The set of terms is denoted TΣ(V ). We
assume Σ includes at least some basic constructors such as pairing (·, ·), signing
[[ (·) ]](·), and hashing #(·). The set V is partitioned into public atoms P, random
nonces N , and private keys K.

Our analysis will sometimes depend on what terms an adversary can derive
(or construct). We say that term t is derivable from a set of term T ⊆ V iff
t ∈ TΣ(T ), and we write T ` t. We assume the adversary knows all the public
atoms P, and so can derive any term in TΣ(P) at any time. We also assume
the set of measurement values is public, so an adversary can forge acceptable
evidence. We denote the set of potential measurement values for a target t by
MV(t).

We represent both the values stored in PCRs and the quotes as terms in
TΣ(V ). Extending a PCR by value v amounts to replacing its contents c with
the hash #(v, c). Resetting a PCR sets its contents to a fixed, public value, say
rst. Since PCRs can only be updated by extending new values, their contents
form a hash chain #(vn,#(...,#(v1, rst))). We abbreviate such a hash chain as
seq(v1, . . . , vn). So for example, seq(v1, v2) = #(v2,#(v1, rst)). We say a hash
chain seq(v1, . . . , vn) contains vi for each i ≤ n. Thus the contents of a PCR
contain exactly those values that have been extended into it. We also say vi is
contained before vj in seq(v1, . . . , vn) when i < j ≤ n. That is, vi is contained
before vj in the contents of p exactly when vi was extended before vj .

A quote from TPM t is a term of the form [[n, (pi)i∈I , (vi)i∈I ]]sk(t). It is a
signature over a nonce n, a list of PCRs (pi)i∈I and their respective contents
(vi)i∈I using sk(t), the secret key of t. We always assume sk(t) ∈ K the set of
non-public, atomic keys. That means the adversary does not know sk(t) and
hence cannot forge quotes.

3 Examples of Weak Bundling

Before jumping into the technical details, we start with an example that illus-
trates some potential pitfalls of using TPMs for bundling evidence. Consider
an enterprise that would like to ensure that systems connecting to its network
provide a fresh system scan by the most up-to-date virus checker. The network
gateway should ask systems to perform a system scan on demand when they
attempt to connect. We may suppose the systems all have some component A1

that is capable of accurately reporting the running version of the virus checker.
Because this enterprise values high assurance, the systems also come equipped
with another component A2 capable of measuring the runtime state of the ker-
nel. This is designed to detect any rootkits that might try to undermine the
virus checker’s system scan, for example by hiding part of the file system that
contains malicious files. We may assume that A1 and A2 are both measured by
a root of trust for measurement (rtm) such as Intel’s TXT as part of a trusted
boot process.
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Fig. 1. Example Attestation System

Figure 1 is a notional depiction
of an architecture supporting this use
case. In this architecture, the pri-
mary user virtual machine (VM) hosts
the kernel , the virus checker vc and
the file system sys. A sibling VM
hosts the two measurement compo-
nents A1 and A2. These virtual ma-
chines are managed by some hypervi-
sor that runs on the underlying hard-
ware containing the root of trust for
measurement rtm. We have depicted
a virtualized TPM (vTPM) for each
VM while the hardware contains a
physical TPM, although we might consider the possibility that the VMs only
use the physical TPM. Such an architecture is reminiscent of those found, for
example, in [4] or [2].

If the gateway is to appraise the system, it might expect the measurements
to be taken according to the order depicted in Fig. 2 (in which time flows down-
ward). The event of om measuring ot is represented by msoc

(om, ot), where we
include the subscript oc only when it provides a clean runtime context for the
measurer om. This order of events represents the intuitive “bottom-up” approach
to measurement. It ensures that if sys is corrupted but not detected by the
measurement event msker (vc, sys) then the adversary must have either recently
corrupted vc or ker or else he must have corrupted one of the more protected
components A1 or A2 [14]. The att-start(n) event indicates a moment in time in
which the gateway chooses a random nonce n. “Recent” corruptions are those
that occur after this event. The bullet after the first three events is inserted only
for visible legibility, to avoid crossing arrows.

ms(rtm, A1)

++
att-start(n)

��
ms(rtm, A2)

ss•
ss ++

ms(A1, vc)
**

ms(A2, ker)
tt

msker (vc, sys)

Fig. 2. Bottom-up order for measurement

Of course, the gateway cannot
directly observe these events tak-
ing place. Rather, it must infer
the order and outcome of mea-
surements from evidence that is
extended into a TPM and quoted
for integrity protection. We now
consider a couple natural ways
one might think of doing this and
point out some potential pitfalls
in which the presence and order
of the measurement events cannot
be inferred from the quote struc-
ture.

Strategy 1: A single hash chain. Since PCRs contain an ordered history of
the extended values, the first natural idea is for all the components to share a
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PCR p, say in the physical TPM, each extending their measurements into p. The
intuition is that the contents of p should represent the order in which the mea-
surements occurred on the system. To make this more concrete, assume the mea-
surement events of S1 have the following results: ms(rtm, A1) = v1,ms(rtm, A2) =
v2,ms(A1, vc) = v3,ms(A2, ker) = v4,ms(vc, ker) = v5. Then this strategy would
produce a single quote Q = [[n, p, seq(v1, v2, v3, v4, v5) ]]sk(t). To satisfy the or-
der of Fig. 2, any linearization of the measurements would do, so the appraiser
should also be willing to accept Q′ = [[n, p, seq(v2, v1, v3, v4, v5) ]]sk(t) in which
v1 and v2 were generated in the reverse order.

Figure 3 depicts an execution that produces the expected quote Q, but does
not satisfy the desired order. Since all the measurement components have access
to the same PCR, if any of those components is corrupted, it can extend values to
make it look as though other measurements were taken although they were not.
Since the bottom-up order of measurement was not respected, the conclusions
from [14] cannot be applied. Indeed, neither of the corruptions in Fig. 3 are
recent. It is also troublesome since the adversary does not need to corrupt the
relatively deep components A1 or A2. The corrupted vc, having access to p can
extend the expected outcomes of measurement by A1 and A2 without those
components even being involved.

cor(sys)
))

cor(vc)
vv

att-start(n)
��

ext(vc, p, v1)
��

ext(vc, p, v2)
��

ext(vc, p, v3)
��

ext(vc, p, v4)
��

ext(vc, p, v5)
��

qt(n, p) = Q

Fig. 3. Defeating Strategy 1

Strategy 2: Disjoint hash chains. The
problem with Strategy 1 seems to be that
PCR p is a shared resource for many
components of the system that should be
trusted to varying degrees. The corrup-
tion of any component that can extend
into the PCR can affect the results. This
motivates a desire to separate access to
the relevant PCRs, so that, in the extreme
case, there is only a single component with
the authority to extend each PCR. This
could be done by making use of the virtu-
alization architecture and vTPMs to en-
sure that each VM can only interact with
its corresponding vTPM. Indeed, this sep-
aration may be much more natural for the
architecture described above. The vTPM
may further impose access control in the
form of locality constraints for PCRs. Al-
though locality is a relatively limited form
of access control for physical TPMs, one
opportunity provided by vTPMs is a more flexible notion of locality.

A natural next attempt given this assumption would be to produce three
quotes, one from each (v)TPM over the set of PCRs that contain the measure-
ment evidence. This would produce the quotes Q1 = [[n, pr, seq(v1, v2) ]]sk(t),
Q2 = [[n, (p1, p2), (seq(v2), seq(v3)) ]]sk(vt1), Q3 = [[n, pvc, seq(v4) ]]sk(vt2). Fig-
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ure 4 demonstrates that the appraiser is not justified in inferring a bottom-up
order of measurement from this set of quotes. The problem, of course, is that,
since the PCRs may be extended concurrently, the relative order of events is not
captured by the structure of the quote. An adversary may thus be able to alter
the order in which these events take place, taking advantage of the different order
to avoid detection by measurement. For example he could repair a corrupted vc
just in time for it to be measured by A1 so that it appears uncorrupted, when in
fact it was previously corrupted when it performed its own measurement of sys.

ms(rtm, A1)
��

ms(rtm, A2)
��

ms(A1, vc)
��

ms(A2, ker)
��

msker (vc, sys)
��

ext(rtm, pr, v1) // ext(rtm, pr, v2)
++
ext(A1, p1, v3)

��
ext(A2, p2, v4)

ss
ext(vc, pvc, v5)

qq
att-start(n)

��ss ++
qt(n, pr) = Q1 qt(n, (p1, p2)) = Q2 qt(n, pv) = Q3

Fig. 4. Defeating Strategy 2

4 Attestation Systems

In this section we formalize the notions we used for the example in Section 3.

System architecture. We start with a definition of attestation systems that
focuses on the relevant dependencies among components.

Definition 1. An attestation system is a tuple AS = (O,M,C, P, L), where O
is a set of objects (e.g. software components) with a distinguished element rtm.
M and C are binary relations on O. We call

M the measures relation, and
C the context relation.

P = T × R for some set T of TPMs and some index set R of their PCR
registers, and L is a relation on O × P .

M represents who can measure whom, so that M(o1, o2) iff o1 can measure
o2. rtm represents the root of trust for measurement. C represents the kind of
dependency that exists between ker and vc in the example from the previous
section. In particular, the vc depends on ker to provide it a clean runtime context.
We can thus capture the fact that a corrupted ker can interfere with the vc’s
ability to correctly perform measurements, for example by hiding a portion of
the filesystem from vc. Many assumptions one might make about M and C
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affect the dynamics of corruption on the outcome of measurement. This current
paper instead focuses on the bundling of evidence, and so we make only a minor
assumption that M ∪C is acyclic. This ensures that the combination of the two
dependency types does not allow an object to depend on itself. Such systems are
stratified, in the sense that we can define an increasing set of dependencies as
follows.

D1(o) = M−1(o) ∪ C−1(M−1(o))

Di+1(o) = D1(Di(o))

So D1(o) consists of the measurers of o and their context. Elements of P have
the form p = t.i for t ∈ T and i ∈ R. The relation L represents the access control
constraints for extending values into TPM PCRs. We assume each component
in O can only access a single TPM, so that if L(o, t.i) and L(o, t′.i′), then t = t′.
As discussed in the example of Section 3, it may be desirable to have a relatively
strict access control policy L. We can represent the extreme case in which each
component has access to its own PCR by adding the assumption that L is
injective. That is, if L(o, p) and L(o′, p) then o = o′. Of course relaxations of
this strict policy are also expressible.

Events, outputs, and executions. The components o ∈ O perform actions
on the system. In particular, as we have seen, components can measure each
other, extend values into PCRs and the TPM can produce quotes. Additionally,
an adversary on the system can corrupt and repair components with the aim of
affecting the behavior of the other actions. Finally, an appraiser has the ability
to inject a random nonce n ∈ N into an attestation in order to control the
recency of events.

Definition 2 (Events). Let AS be a target system. An event for AS is a node e
labeled by one of the following.

a. A measurement event is labeled by msC -1 (o2 )(o2, o1) such that M(o2, o1). We
say such an event measures o1, and we call o1 the target of e. When C−1(o2)
is empty we omit the subscript and write ms(o2, o1).

b. An extend event is labeled by ext(o, v, p), such that L(o, p) and v is a term.
c. A quote event is labeled by qt(v, tI), where v is a term, and tI = {t.i | i ∈ I}

is a sequence of PCRs belonging to the same TPM t. We say a quote event
reports on p, or is over p, if p ∈ tI .

d. An adversary event is labeled by either cor(o) or rep(o) for o ∈ O \ {rtm}.
e. The attestation start event is labeled by att-start(n), where n is a term.

The second argument to extend events and the first argument to quote events is
called the input.

An event e touches object o (or PCR p), iff o (or p) is an argument or
subscript to the label of e.

When an event e is labeled by ` we will write e = `. We will often refer to
the label ` as an event when no confusion will arise.
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A few observations about this definition: Measurement and extend events
are constrained by the dependencies of the underlying system. So, for example,
a component cannot extend a value into any PCR not allowed by the policy
L. Notice that quote events have no component o ∈ O as an argument. This is
because (v)TPMs may produce quotes in response to a request by any component
that has access to it. The only constraint on adversary events is that they do not
affect the rtm. This is not essential, but it simplifies the statements and proofs of
some theorems later on. We also do not consider the (v)TPMs as objects in O,
so they are also immune from corruption. As for the att-start(n) event, since n
is randomly chosen, extend or quote events that incorporate n must occur after
att-start(n). We expect ms(rtm, o) events not to occur after att-start(n) because
they typically represent boot-time measurements of a system.

As we saw in the example from Section 3, an execution can be described
as a partially ordered set (poset) of these events. We choose partially ordered
sets rather than totally ordered sets because the latter unnecessarily obscure the
difference between causal orderings and coincidental orderings. However, if we
allow arbitrary posets of events we lose the causal structure. In particular, we
need to ensure that in executions we can unambiguously identify (a) whether
or not a component is corrupted at measurement and extension events, and (b)
the contents of PCRs at extension and quote events. In the following, we thus
impose two constraints on the posets of interest.

When no confusion arises, we often refer to a poset (E,≺) by its underlying
set E and use ≺E for its order relation. Given a poset E, let e↓= {e′ | e′ ≺E e},
and e↑= {e′ | e ≺E e′}. Given a set of events E, we let adv(E), meas(E), ext(E),
and qt(E) denote respectively the set of adversary, measurement, extension,
and quote events of E. For any poset (E,≺) of events over attestation system
AS = (O,M,C, P, L), let (Eo,≺o) denote the substructure consisting of all and
only events that touch o ∈ O. Similarly we define (Ep,≺p) for p ∈ P .

Definition 3 (Poset restrictions). We say (E,≺) is adversary-ordered iff for
every o ∈ O, (Eo,≺o) has the property that if e and e′ are incomparable events,
then neither e nor e′ are adversary events.

We say (E,≺) is extend-ordered iff for every p ∈ P , (Ep,≺p) has the prop-
erty that if e and e′ are incomparable events, then they are both quote events.

Adversary-ordered posets ensure that we can unambiguously define the cor-
ruption state of a component at an event that touches it. Extend-ordered posets
ensure that we can unambiguously identify the contents of a PCR at events that
touch it. Both these claims require justification.

Lemma 1. Let (E,≺) be a finite, adversary-ordered poset for MS, and let
(Eo,≺o) be its restriction to some o ∈ O. Then for any non-adversarial event
e ∈ Eo, the set adv(e↓) (taken in Eo) is either empty or has a unique maximal
element.

This lemma (proved in [14]) ensures the following conditions are well-defined.
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Definition 4 (Corruption state). Let (E,≺) be a finite, adversary-ordered
poset for MS. For each event e ∈ E and each object o the corruption state
of o at e, written cs(e, o), is an element of {⊥, r, c} and is defined as follows.
cs(e, o) = ⊥ iff e 6∈ Eo. Otherwise, we define cs(e, o) inductively:

cs(e, o) =


c : e = cor(o)
r : e = rep(o)
r : e ∈ meas(E) ∧ adv(e↓) ∩ Eo = ∅

cs(e′, o) : e ∈ meas(E) ∧ e′ maximal in adv(e↓) ∩ Eo
When cs(e, o) takes the value c we say o is corrupt at e; when it takes the value
r we say o is uncorrupt or regular at e; and when it takes the value ⊥ we say
the corruption state is undefined.

The above definition also allows us to define the result of a measurement
event. In this work, to simplify the analysis, we assume there are no false positives
or negatives as long as the measurer and its context are uncorrupted. However,
we assume a corrupted measurer (or its context) can always produce evidence
indicating that the target of measurement is uncorrupted.

Assumption 1 (Measurement accuracy). Let G(o) and B(o) be a partition
for MV(o). Let e = ms(o2, o1). The output of e, written out(e), is defined as
follows.

out(e) =

{
v ∈ B(o1) cs(e, o1) = c and ∀o ∈ {o2} ∪ C−1(o2) . cs(e, o) = r

v ∈ G(o1) otherwise

If out(e) ∈ B(o1) we say e detects a corruption. If out(e) ∈ G(o1) but
cs(e, o1) = c, we say the adversary avoids detection at e.

Assumption 1 can be used to reason in two ways. The first is to determine the
result of measurement given the corruption states of the relevant components.
It can also be used to infer the corruption states of some components given
the corruption states of others and the result of measurement. That is, suppose
we know the adversary avoids detection at e = msC -1 (o)(o, ot). Then we can
conclude that at least one member of {o}∪C−1(o) is corrupt at e. This fact will
be used in the proof of our main result.

Lemma 2. Let (E,≺) be a finite extend-ordered poset for AS, and let (Ep,≺p)
be its restriction to some p ∈ P . Then for every event e ∈ Ep, ext(e↓) is either
empty, or it has a unique maximal event e′.

This lemma allows us to unambiguously define the value in a PCR at any
event that touches the PCR.

Definition 5 (PCR value). We define the value in a PCR p at event e touch-
ing p to be the following, where e↓ is taken in Ep.

val(e, p) =


rst : ext(e↓) = ∅, e = qt(n, tI)

#(v, rst) : ext(e↓) = ∅, e = ext(o, v, p)
state(e′, p) : e′ = max (ext(e↓)), e = qt(n, tI)

#(v, state(e′, p)) : e′ = max (ext(e↓)), e = ext(o, v, p)
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When e = ext(o, v, p) we say e is the event recording the value v.

Lemma 2 and Definition 5 also allow us to determine the contents of a quote
at a quote event. Recall that, to ensure the signature cannot be forged, we must
assume the signing key is not available to the adversary.

Definition 6 (Quote outputs). Let e = qt(n, tI). Then its output is out(e) =
[[n, (t.i)i∈I , (vi)i∈I ]]sk(t), where for each i ∈ I, val(e, t.i) = vi, and sk(t) ∈ K (the
set of atomic, non-public keys). We say a quote Q indicates a corruption iff some
vi contains a v ∈ B(o) for some o.

Finally, we formally define executions of a measurement system.

Definition 7 (Executions, specifications). Let AS be an attestation system.

1. An execution of AS is any finite, adversary-ordered, extend-ordered poset
E for AS such that whenever e has input v, then v is derivable from the
set P ∪ {out(e′) | e′ ≺E e}, i.e. the public terms together with the output of
previous events.

2. A specification for AS is any execution that contains no adversary events.

We denote by E(S) the set of executions E that contain S as a substructure,
and we say S admits E. When S consists only of quote events outputting a
set Q of quotes, we say E produces Q. We sometime abuse notation and write
E ∈ E(Q).

We thus further restrict executions to ensure that all inputs to extension
and quote events are derivable at the time of the event. This reflects natural
limitations on the adversary that he cannot, for example, break cryptography.

5 Bundling Evidence for Attestation

When evaluating evidence from a set of quotes Q, the only information an ap-
praiser has about the execution E that produced them is that E ∈ E(Q). Ac-
cording to [14], the appraiser should have a “bottom-up” specification S in mind,
and she would like know whether E ∈ E(S). Thus, ideally, we could develop a
strategy for bundling that would ensure E(Q) ⊆ E(S), at least for bottom-up
specifications S. However, this is too much to ask for in the presence of dynamic
corruptions. If the adversary completely owns the system, he can always create
an E ∈ E(Q) \ E(S). The best we can do is ensure that it is difficult for the
adversary to force the execution to be in E ∈ E(Q) \ E(S). In particular, we
will aim to force the adversary to perform corruptions in small time windows,
or to corrupt deeper (and presumably better protected) components (so-called
“recent or deep” corruptions). This section develops the core set of inferences for
characterizing executions in E ∈ E(Q) \ E(S), and proposes a particular strat-
egy for bundling evidence relative to bottom-up measurements. The net result
is that if an adversary would like to convince the appraiser the measurements
were taken bottom-up when in fact they weren’t, then he must perform recent
or deep corruptions. That is, in order to avoid the hypothesis of the main result
from [14] he must nonetheless subject himself to its conclusion!
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5.1 Principles for TPM-based bundling

For the remainder of this section we fix an arbitrary attestation system AS =
(O,M,C, P, L). The proofs of these lemmas can be found in the appendix. Our
first lemma allows us to infer the existence of some extend events in an execution.

Lemma 3. Let e be a quote event in execution E with output Q. For each PCR
p reported on by Q, and for each v contained in val(e, p) there is some extend
event ev ≺E e recording v.

Lemma 4. Let e ∈ E be an event with input parameter v. If v ∈ N or if v is
a signature using key sk(t) ∈ K, then there is a prior event e′ ≺E e such that
out(e′) = v.

Lemma 5. Let E be an execution producing quote Q. Assume vi is contained
before vj in PCR p reported on by Q, and let ei and ej be the events recording
vi and vj respectively. Then ei ≺E ej.

Proof. This is an immediate consequence of Def. 5. ut

Corollary 1. Let E be an execution producing quotes Q, and Q′ where Q reports
on PCR p. Suppose Q′ is contained in p before v. Then every event recording
values contained in Q′ occurs before the event recording v.

These results form the core of what an appraiser is justified in inferring about
an execution on the basis of a TPM quote Q. Notice that the conclusions are only
about extend events, and not about measurement events. This is due to one of
the fundamental limitations of a TPM: Its isolation from the rest of the system
causes it not to have very much contextual information about the measurement
events. We are therefore very careful in what follows to identify the additional
assumptions we must make about components in order to justify the inferences
about measurements we would like to make.

5.2 Formalizing and justifying a bundling strategy

With these results in mind, we revisit the example of Section 3 to develop a
strategy for bundling the evidence created by the measurers. In order to combine
the benefits of the two strategies we considered, we are looking for a strategy
that reflects the history of the events (in particular, their relative orders) while
providing exclusive access for each component to its own PCR. The idea is to
follow Strategy 2, but to ensure the evidence from lower layers is incorporated
into the PCRs of the higher layers in a way that cannot be forged. This results
in a layered, nested set of quotes of the following form.

Q1 = [[n, pr, seq(v1, v2) ]]sk(t)

Q2 = [[n, (p1, p2), (seq(Q1, v3), seq(Q1, v4)) ]]sk(vt1)

Q3 = [[n, pvc, seq(Q2, v5) ]]sk(vt2)

12



The quote Q1 provides evidence that rtm has measured A1 and A2. This quote is
itself extended into the PCRs of A1 and A2 before they take their measurements
and extend the results. Q2 thus represents evidence that rtm took its measure-
ments before A1 and A2 took theirs. Similarly, Q3 is evidence that vc took its
measurement after A1 and A2 took theirs since Q2 is extended into pvc before
the measurement evidence.

This quote structure is an instance of a more general strategy for bundling ev-
idence from measurements that are taken bottom-up. The idea is that bottom-up
measurements create temporal dependencies that reflect the M and C depen-
dencies of the system. So each measurement agent o extends a quote containing
measurements of M−1(o) ∪ C−1(o) before extending the evidence it gathers.
This is why we assume M ∪C is acyclic; this strategy would not be well-defined
otherwise.

We formalize this strategy by giving a criterion for recognizing when a set of
quotes conforms to the strategy. But first, we must finally formalize the as-yet
intuitive notion of bottom-up measurement.

Definition 8. A measurement event e = ms(o2, o1) in execution E is well-
supported iff either

i. o2 = rtm, or
ii. for every o ∈ D1(o1), there is a measurement event e′ ≺E e such that o is

the target of e′.

When e is well-supported, we call the set of e′ from Condition ii above the support
of e. An execution E measures bottom-up iff each measurement event e ∈ E is
well-supported.

Bundling strategy criterion. Let Q be a set of quotes. We describe
how to create a measurement specification S(Q). For each Q ∈ Q, and
each p that Q reports on, and each v ∈ MV(o2) contained in p, S(Q)
contains an event ev = ms(o1, o2) where M(o1, o2) and L(o1, p). Simi-
larly, for each distinct n in the nonce field of some Q ∈ Q, S(Q) contains
the event att-start(n). Let SQ denote the set of events derived in this way
from Q ∈ Q. Then e ≺S(Q) ev iff Q is contained before v and e ∈ SQ. Q
complies with the bundling strategy iff S(Q) measures bottom-up.

Using the results from the start of this section, we can prove that executions
producing quotes that conform to the strategy contain a bottom-up extension
structure that “shadows” the desired bottom-up measurement structure.

Definition 9. Let e = ext(o, v, p) be an extend event in execution E such that
v ∈MV(ot) for some ot ∈ O. We say e is well-supported iff either

i. o = rtm, or
ii. for every o ∈ D1(ot) there is an extend event e′ ≺E e such that e′ =

ext(o′, v′, p′) with v′ ∈MV(o).

13



We call the set of such e′ the support of e. A collection of extend events X
extends bottom-up iff each e ∈ X is well-supported.

Lemma 6. Suppose E ∈ E(Q) where S(Q) measures bottom-up. Then E con-
tains an extension substructure XQ that extends bottom-up.

Proof. Let XQ be the subset of events of E guaranteed by Lemma 3. That is,
XQ consists of all the events e = ext(o, v, p) that record measurement values
v reported in Q. For any such event e, if o = rtm then e is well-supported by
definition. Otherwise, since S(Q) measures bottom-up, Lemma 3 and Corollary 1
ensure XQ contain events e′ = ext(o′, v′, p′) for every o′ ∈ D1(o) where e′ ≺E e.
Thus e is also well supported in that case. ut

Unfortunately, based on the lemmas from the start of the section, this is
as far as we can go. Those lemmas do not allow us to infer the existence of
any measurement events based only on the existence of extension events. In
fact, this seems to be an important fundamental limitation of TPMs. Due to
their isolation from the rest of the system, they have virtually no view into
the activities of the system. Rather, we must rely on the trustworthiness of the
components interacting with the TPM and knowledge of their specified behavior
to infer facts about the behavior of the rest of the system.

We thus identify two assumptions about the behavior of uncorrupted measur-
ers that will be useful in recreating the desired bottom-up measurement structure
from the bottom-up extend structure.

Our first assumption is that uncorrupted measurers extend measurement
values for only the most recent measurement of a given target. This translates
to the following formal condition on executions.

Assumption 2. If E contains an event e = ext(o, v, p) with v ∈ MV(t), where
o is regular at that event, then there is an event e′ = ms(o, t) such that e′ ≺E e.
Furthermore, the most recent such event e′ satisfies out(e′) = v.

Our second assumption is that when uncorrupted measurers extend a quote
from a lower layer followed by measurement evidence it generates, it always gen-
erates the measurement evidence between those two extensions. This similarly
translates to the following formal condition on executions.

Assumption 3. Suppose E has events e ≺E e′ with e = ext(o,Q, p) and e′ =
ext(o, v, p), where Q contains evidence for M−1(o) ∪ C−1(o), and v ∈ MV(t).
If o is regular at e′ then there is an intervening event e ≺E e′′ ≺E e′ such that
e′′ = ms(o, t).

The first assumption allows us to infer the existence of measurement events
from extension events as long as the component is not corrupted. The second
assumptions provides a way of inferring extra ordering information useful for
reconstructing a bottom-up measurement structure.

The second assumption in particular is crafted to correspond closely to our
proposed strategy for bundling evidence, and so we should not expect every
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architecture to satisfy these assumptions. While they may not be necessary for
our purposes, we will show that they are jointly sufficient to guarantee that
either the measurements were taken bottom-up, or else the adversary must have
performed a recent or deep corruption relative to some component.

Theorem 4. Let E ∈ E(Q) where S(Q) measures bottom-up, and suppose it sat-
isfies Assumptions 2 and 3. Suppose that vt ∈ G(ot) for each measurement value
vt contained in Q. Then for each extension event e recording a measurement
value, either

1. e reflects a measurement event that is well-supported by measurement events
reflected by the support of e.

2. a. some o2 ∈ D2(ot) gets corrupted in E, or
b. some o1 ∈ D1(ot) gets corrupted in E after being measured.

Proof. First note that we can immediately apply Lemma 6 to infer that the
extension events represented by Q form a bottom-up extension structure. The
rest of the proof considers an exhaustive list of cases, demonstrating that each
one falls into one of Conditions 1, 2a, or 2b. The following diagram summarizes
the proof by representing the branching case structure and indicating which
clause of the conclusion (C1, C2a, or C2b) each case satisfies.

•
1 ��

2 // •
1 ��

2 // •
1 ��

2 // •
1 ��

2
##

C1 C2a C1 C2a C2b

Consider any extend event e = ext(o1, vt, p1) of X extending a measurement
value for some ot ∈ O. The first case distinction is whether or not o1 = rtm.

Case 1: Assume o1 = rtm. Since rtm cannot be corrupted, it is regular at
e, and by Assumption 2, e reflects the measurement event ms(rtm, ot) which is
trivially well-supported, so Condition 1 is satisfied.

Case 2: Assume o1 6= rtm. Since X extends bottom-up, it has events ei =
ext(oi2, v

i
2, p

i
2) extending measurement values vi2 for every oi ∈ D1(ot), and for

each i, ei ≺E e. Furthermore, by Corollary 1, there is an extend event eq =
ext(o1, Q, p) with ei ≺E eq ≺E e where Q is a quote containing the values
recorded at each ei. Now either some oi2 is corrupt at ei (Case 2.1), or each oi2
is regular at ei (Case 2.2).

Case 2.1: Assume some oi2 is corrupt at ei. Then there must have been a
prior corruption of oi2 ∈ D2(ot), and hence we are in Condition 2a.

Case 2.2: Assume each oi2 is regular at ei. Then Assumption 2 applies to
each ei, so each one reflects a measurement event e′i. In this setting, either o1 is
regular at e (Case 2.2.1), or o1 is corrupt at e (Case 2.2.2).

Case 2.2.1: Assume o1 is regular at e. Then since the events eq and e satisfy
the hypothesis of Assumption 3, we can conclude that e reflects a measurement
event e′ = ms(o1, ot) such that eq ≺E e′ ≺E e. Thus, e′ is well-supported by the
e′i events which are reflected by the support of e, putting us in Condition 1.
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Case 2.2.2: Assume o1 is corrupt at e. Since o1 ∈ D1(ot) one of the e′i
is a measurement event of o1 with output v1 ∈ G(o1) since X only extends
measurement values that do not indicate corruption. Call this event e′∗. The
final case distinction is whether o1 is corrupt at this event e′∗ (Case 2.2.2.1) or
regular at e′∗ (Case 2.2.2.2).

Case 2.2.2.1: Assume o1 is corrupt at e′∗. Since the measurement outputs a
good value, some element o2 ∈ D1(o1) ⊆ D2(ot) is corrupt at e′∗. This satisfies
Condition 2a.

Case 2.2.2.2: Assume o1 is regular at e′∗. By the assumption of Case 2.2.2,
o1 is corrupt at e with e′∗ ≺E e. Thus there must be an intervening corruption
of o1. Since e′∗ is a measurement event of o1, this satisfies Condition 2b. ut

Theorem 4 guarantees that if there are no recent or deep corruptions, then
we can infer the existence of a collection of measurement events reflected by the
values in the quotes. It remains to show that this measurement substructure is
precisely the one we want, namely that it is equal to S(Q). Unfortunately, this
may not be the case. S(Q) may contain orderings that are not strictly necessary
to ensure S(Q) measures bottom-up. However, Assumption 3 can guarantee
only that the orderings necessary to be bottom-up are present. For this reason
we introduce the notion of the core of a bottom-up specification. The core of
a bottom-up specification S is the result of removing any orderings between
measurement events ei ≺S ej whenever ei is not in the support of ej . That is,
the core of S ignores all orderings that do not contribute to S measuring bottom-
up. We can then show that the measurement structure inferred from Theorem 4
is (isomorphic to) the core of S(Q).

Theorem 5. Let E ∈ E(Q) such that S(Q) measures bottom-up, and let S′ be its
core. Suppose that Q detects no corruptions, and that E satisfies Assumptions 2
and 3. Then one of the following holds:

1. E ∈ E(S′),
2. there is some ot ∈ O such that

a. some o2 ∈ D2(ot) is corrupted, or
b. some o1 ∈ D1(ot) is corrupted after being measured.

6 Related Work

There has been much research into measurement and attestation. While a com-
plete survey is infeasible for this paper, we mention the most relevant highlights
in order to describe how the present work fits into the larger body of work.

Building on the early work of Trusted Boot [9], there have been numerous
attempts to bring trust further up the software stack. Most notably, Sailer et
al. [15] introduced an integrity measurement architecture (IMA) in which each
application is measured as it is launched. More recently, this body of work on
static measurement has been augmented with attempts to measure dynamic sys-
tem properties that give a clearer picture of the current state of the system (e.g.
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[8, 7, 6, 17]). Most of these focus on the low-level details of what to measure
and how to implement it without considering how runtime corruption can affect
the attestation process itself. In particular, it is common to invoke the use of
Trusted Boot and IMA as a way to build a chain of trust from the hardware
which the proposed measurement agent can extend. Our work could be applied
to systems that incorporate these integrity measurers in order to better under-
stand how they respond to dynamic corruption of the trusted computing base
and measurement agents themselves.

We are not the first to discuss the dependencies that emerge in a layered
system. Some work [10, 16] builds on the notion of a tree of trust [11] to tease
out a structure for the integrity evidence required of an attestation. The focus in
these papers is on ensuring the integrity of the system can be correctly inferred
from the structure of the evidence. While we focus on only a subset of the
trust dependencies considered in, say, [10], they do not take full account of the
effects dynamic corruption of components might have on the bundling of the
evidence. Rather they explicitly bracket out the problem of guaranteeing the
trustworthiness of the integrity information itself. An interesting line of future
work would be to investigate the causal effects of dynamic corruption on the
wider variety of dependencies they consider.

Layered dependencies are also implicit in the design of many systems intended
to support attestation of their runtime properties. Coker et al. [4] present 5 prin-
ciples for remote attestation and propose a layered system designed from those
principles. They do not investigate the low-level structure of evidence that must
be created in order to attest to the layered dependencies or how to bundle such
evidence using the TPM. Cabuk et al. [3] present a hierarchical system with a
software-based root of trust for measurement that is connected to a lower-level
chain of trust rooted in hardware. They demonstrate the variety of hierarchical
dependencies that can naturally arise and propose ways to manage this com-
plexity. Finally, in [2], Berger et al. propose a way to manage the complexity of
appraising systems with layered dependencies as the systems scale. In all of these
examples, to the extent that runtime corruptions are considered seriously, the
problem of understanding how such corruptions break the chain of trust is not
examined. Within our formalism we should be able to represent all these systems
and characterize the ways in which runtime corruptions can occur without being
reflected in the final bundle of evidence. Particular designs may enable bundling
strategies that are tailored to the design which require weaker assumptions than
those we used in this paper.

7 Conclusion

In this paper we have developed a formalism for reasoning about layered attes-
tations. Within the framework we have identified some potential pitfalls when
using a TPM to bundle measurement evidence. These pitfalls arise due to a
fundamental limitation of TPMs. Namely, by virtue of being isolated from the
main system, TPMs have very limited contextual information about the events

17



occurring on that system. This means further assumptions must be made about
uncompromised components in order for an appraiser to infer desired behavior.

We also identified a core set of inference principles that can help system
designers determine the consequences of a particular strategy for bundling ev-
idence. Finally, we applied those principles to prove the robustness of a new
layered approach to bundling evidence. We believe this new proposal gives easy
to explain design advice. Namely, after identifying the temporal dependencies
required for an attestation, the evidence should be extended into a TPM one
layer at a time, ensuring the quotes from lower layers are incorporated into the
quotes from higher layers as you go. This will remain robust as long as uncor-
rupted components can be trusted to take fresh measurements after receiving
the results from below.

Although this proposal is most applicable to systems designed around the use
of vTPMs, we believe the core idea illuminates the problems with certain naive
ways of using a TPM to report evidence. In any case, we make no claims that
this proposal represents a complete solution for all cases. Rather, we consider it
the first attempt to seriously account for the possibility of runtime corruption
during an attestation, and we would encourage others to develop complementary
strategies. The formalism introduced here together with the inference principles
would be a good way to evaluate such proposals.
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A Proof of Lemmas

The following is a proof of Lemma 3

Proof. By definition, the values contained in a PCR are exactly those that were
previously extended into it. Thus, since ext events are the only way to extend
values into PCRs, there must be some event ev = ext(o, v, p) with ev ≺E e. ut

The following is a proof of Lemma 4
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Proof. Definition 7 requires v to be derivable from the public terms P and the
output of previous messages. Call those outputs O.

First suppose v ∈ N . Since v is atomic, the only way to derive it is if v ∈ P∪O.
Since P ∩N = ∅, v 6∈ P, hence v ∈ O as required.

Now suppose v is a signature using key sk(t) ∈ K. Then v can be derived in
two ways. The first is if v ∈ P ∪ O. In this case, since v 6∈ P it must be in O
instead as required. The other way to derive v is to construct it from the key
sk(t) and the signed message, say m. That is, we must first derive sk(t). Arguing
as above, the only way to derive sk(t) is to find it in O, but there are no events
that output such a term. ut

We conclude with the complete proof of Theorem 5.

Proof. By Lemma 6, E contains a substructure XQ of extend events that ex-
tends bottom-up. Thus by Theorem 4, Conditions 2a and 2b are possibilities. So
suppose instead that E satisfies Condition 1 of Theorem 4. We must show that
E ∈ E(S′). In particular, we construct α : S′ → E and show that it is label- and
order-preserving.

Consider the measurement events esi of S′. By construction, each one comes
from some measurement value vi contained in Q. Similarly, the well-supported
measurement events emi of E guaranteed by Theorem 4 are reflected by extend
events ei of E which are, in turn, those events that record each vi in Q. We need
to show that esi = emi for each i (i.e. that the labels agree), and that the orders
among the esi are reflected by corresponding orders among the emi .

Consider first the label of esi . It corresponds to a measurement value vi con-
tained in some pi of Q. So esi is labeled ms(o, o′) where M(o, o′), vi ∈ MV(o′),
and L(o, pi). The event emi also corresponds to the same vi. Lemma 3 ensures
that ei = ext(o, v, pi) with L(o, pi), and so the measurement event it reflects is
emi = ms(o, o′) with M(o, o′) and vi ∈ MV(o′). Thus esi and emi have the same
label.

We now show that if esi ≺S(Q) e
s
j then emi ≺E emj . The former ordering exists

in S′ because some quote Q ∈ Q is contained in pj before vj and vi is contained
in Q, and because esi is in the support of esj . By Corollary 1 ei ≺E ej and ei is in
the support of ej and therefore Theorem 4 ensures that the measurements they
reflect are also ordered, i.e. emi ≺E emj .

Finally, consider any events e = att-start(n) in S′. They come from nonces
n found as inputs to quotes Q ∈ Q. By Lemma 4, E also has a corresponding
event e∗ with out(e∗) = n. Since att-start events are the only ones with output
of the right kind, e∗ = att-start(n) as well. Thus we can extend α by mapping
each such e to the corresponding e∗. The rules for S(Q) say that e ≺S(Q) e

′ only
when Q has n in the nonce field, and Q occurs before the value recorded by e′.
In E, e∗ precedes the event producing Q (by Lemma 4) which in turn precedes
e′ by Lemmas 4 and 5. Thus the orderings in S(Q) involving att-start events are
also reflected in E. ut

20


