
On Orderings in Security Models

Paul D. Rowe

The MITRE Corporation, Bedford, MA, USA
prowe@mitre.org

Abstract. Security decisions are often made on the basis of a compari-
son of two or more alternatives. Is it better go with design A or design B?
Which security policy is best for my needs? What combination of defen-
sive mitigations provide the best protection from attack? Implicit in such
comparisons are ordering relations ĺ among the alternatives. Such order-
ing relations crop up in numerous security formalisms. This paper studies
preorders that arise in three formalisms for very different domains of se-
curity: attack trees, Copland specifications of layered attestations, and
cryptographic protocols. While these three areas of study appear to be
very different in subject matter and form, we identify a common con-
struction for defining preorders that arise in them. This new perspective
unlocks novel connections that should allow insights in one domain to
bear fruit in the others as well.

Keywords: Attack Trees · Layered Attestation · Cryptographic Proto-
cols · Security Orderings.

This paper is dedicated to Joshua Guttman in gratitude for what he has taught
me. He has helped me to become a better researcher and to search out the essence
of an idea. He has also taught me the importance of non-total orderings! This
paper is presented in that spirit.

1 Introduction

When applying formal methods to the security of systems, we often want to
know if one solution is “better” than another along some dimension of interest.
For example, when designing a cryptographic protocol, we may wonder whether
design D1 is better than D2 in the sense that any security goals achieved by D2

can also be achieved by D1 [13]. Similarly, we might want to compare strategies
for distributing firewall policies to various network routers and endpoints against
their ability to enforce certain prohibitions on patterns of network traffic [1]. In
such cases, what we seek is an ordering relation ĺ that captures some aspect of
the security characterisitcs of the objects it orders.

It is too much to expect to find a total order. The multidimensional nature of
security means that tradeoffs exist between alternatives that generally prevent
two arbitrary objects from necessarily being ordered. We thus often content
ourselves with preorders, or sometimes partial orders, along various dimensions

2 P. Rowe

of security. Recall that a preorder is a relation ď that is reflexive and transitive,
while a partial order is also anti-symmetric (a ď b and b ď a implies a “ b).

In this work we explore preorders that have been defined for numerous se-
curity formalisms and begin to develop a unifying lens through which to view
them. This line of investigation began when we identified some surprising par-
allels between the syntax and semantics of two formalisms. Sequential attack
trees [7, 6] allow researchers to formally express ways in which an adversary
might attack a system, accounting for disjunction, conjunction, and sequencing
of atomic actions. Copland [11] is a specification language for layered attesta-
tion defining how to orchestrate integrity measurements of a target system. In
developing Copland, we were faced with the following research question: How
can we devise an order on Copland expressions that reflects their strength or
trustworthiness in the presence of an active attacker? The similarity between
attack trees and Copland suggested that we might be able to directly translate
prior work on ordering attack trees [6] to the domain of Copland. As we will
see below, such a direct translation, while possible, does not produce an order
that reflects the trustworthiness of Copland expressions. It does, however, define
orders that capture potentially useful performance characteristics of executing
Copland expressions.

Since the direct translation does not shed light on trust properties of Copland
expressions, we ultimately took a different approach for Copland trust analy-
sis [14]. We eventually understood this approach to defining a preorder to be
an instance of a general construction. The original preorder on attack [6] and
its direct translation to Copland expressions are also instances of this general
construction. In working through the details of these connections, we realized
that yet another security-related preorder—one in the domain of cryptographic
protocols, and developed by the author with Guttman and Liskov [13]—might
also be viewed as an instance of this general construction.

Summary and contributions. The fundamental observation of this paper
is that preorders arise naturally out of considering homomorphisms between
semantic sets. While this observation is not new in itself, it provides a common
vocabulary with which to describe preorders in three domains with drastically
different semantics. When the semantics of some formal object (e.g. attack tree,
Copland phrase, cryptographic protocol) is given as a set of structures that
come equipped with a notion of a homomorphism, we can define preorders on
the objects without reference to the details of the semantics. That is, we can
treat a semantic operator rr ¨ ss as a black box that produces sets of structures.
We can then define preorders on objects according to what homomorphisms exist
between their semantic sets.

In defining a preorder for sequential attack trees, Horne et al. [6] give a
“white-box” treatment of their semantics, and intersperse upward and down-
ward closures under homomorphisms to build preorders. Our first contribution
is to reformulate their ideas so we can treat the semantics as a black box that
produces sets of graphs. We can then take downward and upward closures of
the results without worrying about how the sets of graphs are generated (The-

2. PRELIMINARIES 3

orems 1 and 2). We then show how to reinterpret the relationships that emerge
after taking downward and upward closures in terms of the homomorphisms that
exist between the sets produced by the semantics (Theorem 3). This is an alter-
nate way of deriving the attack tree semantics of [6] (Corollary 1) that gives us
a general construction for defining preorders from a black-box, base semantics.

Copland phrases bear striking syntactic similarities with attack trees that
manifest as structural similarities in their semantics. The general construction
suggested by Corollary 1 leads to a direct translation of the preorder on attack
trees to a preorder on Copland expressions. The structural similarities in their
semantics allows us to translate results from the analysis of attack trees to the
analysis of Copland expressions (Theorem 4, Corollary 2) telling us what kind of
properties are reflected by the translated preorder. Unfortunately, this translated
preorder doesn’t capture trust properties of Copland expressions. However, by
modifying the Copland base semantics to account for possible adversary actions,
our general preorder construction yields an order that does capture important
aspects of trustworthiness (Theorem 5).

Finally, we demonstrate the generality of our construction of preorders by
shifting our focus to the domain of cryptographic protocols. We summarize the
strength order of cryptographic protocols that the author defined with Guttman
and Liskov [13] and argue that it coincides with our general construction for
preorders given the base semantics defined by the protocol analyzer CPSA. Nu-
merous details prevent us from rigorously proving this correspondence, so we
record it as Conjecture 1.

The paper is structured as follows. We first present some preliminary defini-
tions and lemmas in Section 2. We then treat attack trees in Section 3, showing
how to turn the white-box semantics into a black-box one that allows us to
define a general construction of preorders. We introduce Copland in Section 4,
and demonstrate the syntactic and semantic similarities with sequential attack
trees. In Section 5 we show to leverage that connection to extract useful per-
formance attributes along which to compare Copland phrases. We then alter
the Copland base semantics to obtain a trust ordering in Section 6. Finally, in
Section 7, we argue that the protocol strength ordering in an instance of our
general construction.

2 Preliminaries

The common thread among all the formalisms we consider here is that they per-
tain to graphs. While some of the structures are graphs with extra information,
the core of the structure is still a graph. We therefore focus the types of graphs
and homomorphisms between them that will interest us in the current study.

Definition 1 (Graph). A directed, labeled, acyclic graph G “ pN,E, `q is a
triple in which N is a finite set of nodes, E Ď N ˆ N is a finite set of edges
(represented as ordered pairs of nodes from N), and ` : N Ñ L is a labeling
function from nodes to some set L of labels. Furthermore, the edge relation is

4 P. Rowe

acyclic. When we use the unqualified term graph, the qualifiers “directed, labeled,
and acyclic” are implied unless otherwise stated.

Definition 2 (Homomorphism). A (graph) homomorphism η : G Ñ H be-
tween graphs G “ pNG, EG, `Gq and H “ pNH , EH , `Hq is a function η : NG Ñ
NH on the nodes such that for every edge pn1, n2q P EG, pηpn1q, ηpn2qq P EH ,
and for every node n P NG, `Gpnq “ `Hpnq.

A homomorphism is injective iff the underlying map on nodes is injective. A
smoothing homomorphism is one which is bijective on nodes.

Homomorphisms between graphs bestow a preorder on graphs as follows:
G ď H if and only if there is some homomorphism η : GÑ H. In fact, any class
of structures that admit homomorphisms will bestow a preorder in the natural
way. We will rely on this later when we consider graphs with “extra structure”.
If we only allow injective homomorphisms, then the preorder is actually a partial
order (up to isomorphism) because injective homomorphisms in both directions
between (finite) graphs G and H imply that G and H are isomorphic.

The homomorphism preorder on graphs admits the standard notions of up-
sets (or order filters) and down-sets (or order ideals) [2].

Definition 3 (Up-/down-sets). Given a preorder pP,ďq, a set S Ď P is an
up-set (or order filter) iff for all structures G and H, whenever G P S and
G ď H, then H P S. S is a down-set (or order ideal) iff for all structures G
and H, whenever H P S and G ď H, then G P S.

The upward closure of a set S is φpSq “ tH P P | DG P S ^ G ď Hu.
Similarly the downward closure of a set S is ιpSq “ tG P P | DH P S ^G ď Hu.

The symbols φ and ι reflect the terminology of order filters and order ideals.
Since an important aspect of the present work is to connect with Horne et
al.’s work [6], it is important to note that they use an order that is dual to the
homomorphism preorder. The result is that their notions of “up” and “down” are
reversed from the use in this paper; so their order filters are our order ideals, etc.
Readers familiar with [6] will have to swap φ and ι when translating between the
papers. Of course, the duality principle for ordered sets ensures such translations
are possible and meaningful. Despite these challenges of translation, we prefer
to work in the homomorphism preorder because homomorphisms are a central,
unifying theme across all the formalisms we study here.

We are now ready to define a few operations on graphs that allow us to build
new graphs from old ones. They are not new and can already be found in [6].

Definition 4 (Z, ˚). Let G “ pNG, EG, `Gq and H “ pNH , EH , `Hq be graphs.
Then we can define

– N “ NG ˆ t0u YNH ˆ t1u

– E “ tppx, 0q, py, 0qq | px, yq P EGu Y tppx, 1q, py, 1qq | px, yq P EHu

– `pn, 0q “ `Gpnq and `pn, 1q “ `Hpnq.

2. PRELIMINARIES 5

N is the disjoint union of the nodes of G and H, E is the disjoint union of the
edges of G and H, and ` is the natural labeling of the nodes in N inherited from
`G and `H .

We call the graph pN,E, `q the disjoint union of G and H, denoted GZH.

If we additionally define E1 “ E Y ppNG ˆ t0uq ˆ pNH ˆ t1uqq, then we call
the graph pN,E1, `q the sequential composition of G and H, denoted G ˚H.

We can easily lift these two operations on graphs into two corresponding
operations on sets of graphs in the following way.

Definition 5 (’,). If S1 and S2 are sets of graphs, then the distributive
product S1 ’ S2 is defined by tG1 Z G2 | G1 P S1 ^ G2 P S2u. The pointwise
sequential composition of two sets of graphs S1 S2 is defined by tG1 ˚ G2 |

G1 P S1 ^G2 P S2u.

We now prove a few properties about how upward and downward closures
distribute over the above graph operations.

Lemma 1. For any sets of labeled digraphs S and T , the following equalities
hold.

ιpS Y T q “ ιpSq Y ιpT q
ιpS ’ T q “ ιpSq ’ ιpT q
ιpS T q “ ιpιpSq ιpT qq

Proof. We only prove here the most interesting of the equations. The other two
proofs are quite similar.

ιpS T q “ tG | DS P S, T P T , G ď S ˚ T u

“ tG | DG1, G2, G1 ď S,G2 ď T,G ď G1 ˚G2u

“ tG | DG1 P ιpSq, DG2 P ιpT q, G ď G1 ˚G2u

“ ιpιpSq ιpT qq

[\

Lemma 2. For any sets of graphs S and T , the following equalities hold.

φpS Y T q “ φpSq Y φpT q
φpS ’ T q “ φpφpSq ’ φpT qq
φpS T q “ φpφpSq φpT qq

Proof. The proof is similar to the proof of Lemma 1 and so is omitted. [\

6 P. Rowe

3 Attack Trees

Attack trees [15] are a popular way for security experts to formalize their thought
process about how an adversary might attack a system. They allow an analyst
to express combinations of activities an adversary may or must perform in or-
der to successfully attack a system. In their original formulation, the leaves of
attack trees were labeled with adversary activities, and the internal nodes were
labeled with attacker sub-goals. Two types of branching were defined: disjunctive
branching in which satisfying any of the child nodes is sufficient to satisfy the
parent, and conjunctive nodes in which all children must be satisfied in order for
the parent node to be satisfied. More recently, Jhawar et al. [7] have introduced
a sequence node to attack trees in which all the children must be satisfied in
the given order for the parent node to be satisfied. This allows attack trees to
capture causal or dependency relationships among the actions. Such sequential
attack trees are the object of study in this section.

A full treatment of attack trees in general, and sequential attack trees in
particular, is out of scope for this work. For a more comprehensive introduction
to all types of attack trees, we direct the reader to a useful survey by Wide l et
al. [17].

A key observation is that the structure of attack trees allows them to be
expressed as terms in a grammar in which internal nodes of the tree are repre-
sented by an operator corresponding to the intended semantics of satisfaction
as described above. That is, we can build up attack trees out of internal nodes
labeled by one of the following three operators: Ź, Ÿ, Ż representing disjunction,
conjunction, and sequence, respectively. They satisfy the following grammar:

T :: A | T Ź T | T Ÿ T | T Ż T (1)

where A represents a set of atomic actions. In practice we can allow the operators
to have arity greater than 2, as is done in [7], however it is more convenient for
our purposes (and without loss of generality) to use this more restricted syntax.

Numerous semantic interpretations have been given to this syntax, but we fo-
cus on the series-parallel graph semantics in which the meaning of an attack tree
is given as a set of series-parallel graphs. The original semantics for sequential
attack trees given in [7] uses graphs with labeled edges instead of labeled nodes.
We follow the presentation in [6] and consider a dual notion of series-parallel.
As discussed in [16], series parallel graphs as defined below are precisely the line
graphs of so-called two-terminal series-parallel graphs as used in [7].

Definition 6 (Series-parallel). A series-parallel graph over a set of possible
nodes N is defined inductively as follows.

– A single labeled node is a series-parallel graph.
– If G and H are series-parallel graphs then GZH is a series-parallel graph.
– If G and H are series-parallel graphs then G ˚ H are both series parallel

graphs

3. ATTACK TREES 7

The original semantics of [7] associates to any sequential attack tree a set of
series-parallel graphs. The transitive closure of a series-parallel graph defines a
partially ordered set. The idea of the semantics is that node represent atomic
events which are ordered in the induced partially ordered set if one event depends
on the results of another. Disjunction in attack trees results in several possibilities
requiring a set of graphs. Thus the union in the following definition is a union
of sets of graphs (not the disjoint union Z of graphs).

Definition 7 (Base semantics). The base semantics for attack trees is defined
inductively as follows, where Na denotes the graph with a single node whose label
is a.

rr a ssB “ tNau rr t1 Ź t2 ssB “ rr t1 ssB Y rr t2 ssB

rr t1 Ÿ t2 ssB “ rr t1 ssB ’ rr t2 ssB rr t1 Ż t2 ssB “ rr t1 ssB rr t2 ssB

The base semantics in Def. 7 was designed to determine equivalence of attack
trees. That is, two trees are equivalent precisely when they have the same se-
mantics. But when this semantics was introduced in [7], no attention was paid
to distinguishing the strength of attack trees.

To address this questions of relative strength, Horne et al. [6] introduced
two additional semantics for sequential attack trees that create a “specializa-
tion” preorder on them. These preorders correspond closely to two variations on
the base semantics, one involving down-sets and the other involving up-sets of
graphs.1

Definition 8 (Down-set semantics). The down-set semantics for attack trees
is given by the following.

rr a ssI “ tNau rr t1 Ź t2 ssI “ rr t1 ssI Y rr t2 ssI

rr t1 Ÿ t2 ssI “ rr t1 ssI ’ rr t2 ssI rr t1 Ż t2 ssI “ ιprr t1 ssI rr t2 ssIq

Definition 9 (Up-set semantics). The up-set semantics is given by the fol-
lowing:

rr a ssF “ φptNauq rr t1 Ź t2 ssF “ rr t1 ssF Y rr t2 ssF

rr t1 Ÿ t2 ssF “ φprr t1 ssF ’ rr t2 ssF q rr t1 Ż t2 ssF “ φprr t1 ssF rr t2 ssF q

In these definitions, we only apply the downward (respectively upward) clo-
sures whenever the combining operator does not produce an down-set (respec-
tively up-set). Applying them in the other cases would be redundant. Since we
do not restrict ourselves to smoothing homomorphisms, we must close under φ in
more cases than is needed for the corresponding semantics in [6]. It is interesting
that this difference resulted in no change for our down-set semantics.

1 Recall that we are working in an order that is dual to the one used in [6]. In comparing
with that work, the reader must substitute ι with φ (and vice versa) and similarly
for I and F .

8 P. Rowe

These two semantics generate two natural preorders on attack trees:

t1 ĺI t2 iff rr t1 ssI Ď rr t2 ssI

t1 ĺF t2 iff rr t1 ssF Ď rr t2 ssF
(2)

The purpose of these preorders is to enable quantitative comparisons among
attack trees. It is possible to make assertions about quantitative comparisons
using only the two preorders used above, provided the quantitative measures are
sound with respect to the preorders. The details of such comparisons (including
a definition of soundness) are given in Section 5. In the meantime, we proceed
with an alternative derivation of the preorders in Eqn. 2.

Specialization using rr ¨ ssB. Definitions 8 and 9 interleave the graph opera-
tions with the downward and upward closure operations. Our first novel insight
regarding these two semantics is that they are equivalent to first applying the
base semantics of Def. 7, then applying either the downward or the upward
closure.

Theorem 1. For any attack tree t, rr t ssI = ιprr t ssBq.

Proof. We proceed by induction on the structure of t. We start with the case
in which the tree is an atom a. rr a ssI “ tNau. And rr a ssB “ tNau “ ιptNauq.
When t “ t1 Ż t2 we have

rr t1 Ż t2 ssI “ ιprr t1 ssI rr t2 ssIq

“ ιpιprr t1 ssBq ιprr t2 ssBqq

“ ιprr t1 ssB rr t2 ssBq

“ ιprr t1 Ż t2 ssBq

where the second equality is the inductive hypothesis and the third equality is
by Lemma 1.The other inductive cases follow analogously from Lemma 1. [\

The analogous result holds for the up-set semantics.

Theorem 2. For any attack tree t, rr t ssF “ φprr t ssBq.

Proof. The proof uses the same ideas as that of Theorem 1 and so is omitted. [\

In a sense, Theorems 1 and 2 show that the downward and upward closures
in Defs. 8 and 9 are needlessly entangled with aspects of the syntax of attack
trees. The base semantics of Def. 7 provides a natural and clear interpretation for
attack trees. Instead of messing with the internal structure of that semantics to
extract information about specialization, we can first compute the base semantics
rr t ssB and then compute either the downward or upward closure.

While the semantics of [6] generate finite sets because they restrict them-
selves to smoothing homomorphisms that do not add any new nodes to graphs,
we have chosen to consider arbitrary homomorphisms which means that the
upward closure is an infinite set. This introduces a new challenge not faced

3. ATTACK TREES 9

in [6]. Namely, to determine if t1 ĺF t2 we must devise a procedure for deciding
whether φprr t1 ssBq Ď φprr t2 ssBq that does not require us to compute either set.
It turns out we can easily do this by considering the homomorphisms that exist
between rr t1 ssB and rr t2 ssB. This allows us to reduce an infinite question of set
membership to a finite questions about what homomorphisms exists among two
finite sets of graphs.

Definition 10 (Supports, Covers). Given two sets of graphs S and T , we
say that S supports T iff for every H P T , there is some G P S, such that
G ď H. We say that T covers S iff for every G P S there is some H P T such
that G ď H.

Intuitively, S supports T if S is big enough to contain sources of homomor-
phisms to everything in T . Similarly, T covers S if T is big enough to contain
targets of homomorphism from everything in S.

Theorem 3. For any two sets of graphs S and T , ιpSq Ď ιpT q if and only if T
covers S. Similarly, φpSq Ď φpT q if and only if T supports S.

Proof. Suppose ιpSq Ď ιpT q. We have S Ď ιpSq Ď ιpT q “ tG | DH P T , G ď Hu.
So, for every G P S, there is some H P T such that G ď H. But that’s precisely
the definition of T covers S.

Now suppose that T covers S. Then, for every G P S, there is some H P T
such that G ď H. Now let K P ιpSq, so that there is some G P S such that
K ď G. But from above, there is some H P T such that G ď H. Transitivity of
ď gives us K ď H, and hence K P ιpT q. Since K was chosen abritrarily from
ιpSq we conclude that ιpSq Ď ιpT q as required.

Now suppose that φpSq Ď φpT q. We have S Ď φpSq Ď φpT q “ tH | DG P

T , G ď Hu. So for all H P S there is some G P T such that G ď H. But this is
the definition of T supports S as required.

Finally, suppose that T supports S. So, for every H P S, there is some G P T
such that G ď H. Now consider K P φpSq. By definition, there is some H P S
such that H ď K. But from above, there is some G P T such that G ď H.
Using the transitivity of ď we find G ď K, showing that K P φpT q. Since K
was chosen arbitrarily from φpSq, we conclude φpSq Ď φpT q as required. [\

Theorem 3 gives us an effective procedure for resolving any question of the
form t1 ĺF t2 or t1 ĺI t2. We simply compute rr t1 ssB and rr t2 ssB and enumerate
the homomorphisms that exists between elements of those finite sets to determine
if one of them covers or supports the other.

Interestingly, while Horne et al. were not faced with this challenge, they nev-
ertheless devised a procedure for resolving such questions that does not amount
to a direct check of set inclusion between finite sets. Instead, they develop two ad-
ditional semantics into an extension of a fragment of linear logic (called MAV [5])
and proving that two trees can be ordered precisely when the linear logic interpre-
tation of one implies the interpretation of the other. Since MAV is decidable, they
can extract a decision procedure. This logical encoding is reminiscent of prior

10 P. Rowe

work by the author with Guttman and Liskov [13]. In that work, we developed
a method for comparing the strength of cryptographic protocols by assigning
them formulas in first order logic (expressing the security goals they satisfy) and
ordering them according to implication. We will say more about this connection
in Section 7.

An immediate corollary of Theorem 3 is the following theorem that says we
can recover the intended preorders on attack trees without explicit reference to
the downward and upward closures.

Corollary 1. For any two attack trees t1 and t2 we have the following.

t1 ĺI t2 iff rr t2 ssB covers rr t1 ssB

t1 ĺF t2 iff rr t2 ssB supports rr t1 ssB

This corollary gives us a reusable recipe for generating preorders. If we are
given a class of objects, and some semantic operator rr ¨ ss on those objects yielding
sets of graphs, we can define two preorders ĺI and ĺF in terms of which semantic
sets cover or support which others. In fact, since the notions of covering and
supporting are well defined for any structures that admit homomorphisms, this
construction is quite general.

Throughout the rest of the paper, we repeatedly take inspiration from Corol-
lary 1 to define new orders. For structures other than attack trees, we identify
a “base” semantics playing the same role as Def. 7, and then define preorders
according to which sets in those semantics cover or support which others. When
the base semantics has a structural connection with rr ¨ ssB (such as Copland,
presented in the next section) we will see that we can transport some results
from attack trees to the new setting. However, it is important to note that this
construction works even when the base semantics bears no resemblance to rr ¨ ssB,
and we will explore two such instances in Sections 6 and 7.

4 Copland

In this section we turn our attention to Copland, a domain-specific language for
specifying layered attestations [11]. On the surface, Copland has little to do with
attack trees. However, we will describe a surprisingly deep connection between
the two formalisms that allows some results about the preorders on attack trees
to be applied directly to Copland specifications. We also believe research into
attack trees can benefit from insights established about Copland.

Remote attestation is a technique for establishing trust in the integrity of a
remote system. This is done by having agents local to the target system mea-
sure various aspects of the target. This typically involves hashing portions of a
component’s memory with predictable values that are likely to be changed as
a result of an attack to the component. The measurement evidence gathered
from various subcomponents is then bundled together both to reflect the way
in which it was collected (who measured what, and in what order), and to pro-
vide integrity protection to the evidence itself so it cannot be tampered with in

4. COPLAND 11

transit. Layered attestations leverage hierarchical dependencies built into many
modern systems to ensure trust in the measurement apparatus can be estab-
lished before relying on it to establish trust in the target. Copland was designed
to support flexible specifications of layered attestations, and connect to a trust
analysis framework [12] (about which more will be said below).

What follows is a very brief overview of the syntax and semantics of Copland.
The reader should consult [11, 4] for more in-depth descriptions and motivations.
An expression in Copland is called a phrase. The syntax of Copland phrases is
given by the following grammar:

C :: ApV q Atomic action with arguments
| C Ñ C Linear sequence

| C
π
ă C Sequential branching

| C
π
„ C Parallel branching

| @P r C s At place
| p C q Grouping

Copland is parameterized by the set of atomic actions available to use. The
syntax is designed to specify both the control flow of actions as well as the
data flow of evidence among them. The control flow operators are similar to the
operators used in attack trees. Copland contains two sequential operators (Ñ,ă),
and one conjunction operator („). The purpose of having two distinct sequential
operators is to define distinct data flow patterns for the sequential control flow.
This will manifest in the semantics given below. Copland does not contain any
disjunction operators. There is no fundamental barrier to including disjunction;
it simply was not immediately relevant for the intended use of Copland phrases.
Copland also contains a new type of operator @P . It indicates the transfer of

data and control from one entity to another. The decorators π above
π
ă and

π
„

specify fine grained aspects of data flow that do not affect the results of this
paper, so we will say no more about them.

The semantics of Copland is reminiscent of the base semantics of Def.7 for
sequential attack trees from [7], but it is significantly complicated by the need
to carefully track data flow. As with attack trees, Copland semantics is also
given in terms of series-parallel graphs, but it relies on an auxiliary evidence-
type semantics that defines how the type of evidence is transformed throughout
the execution of a phrase. In addition to a Copland phrase c, this evidence-type
semantics, denoted Epc, p, eq, is sensitive to the place p currently in control of
the execution and to the evidence type e built up so far. The details of this
semantics is not relevant to our current study, so we treat it as a black box
that returns a given type of evidence. The semantics associated with some of
the operators includes some “extra” events (req, rpy, split, and join) that serve
to coordinate the evidence-type semantics with the data flow. In contrast with
Def. 7, the Copland semantics results in a single graph, not a set of graphs, so
it uses the graph constructors from Def. 4, and not Def. 5.

12 P. Rowe

Definition 11 (Copland semantics). The Copland semantics for a Copland
phrase is a graph defined by the following.

rr apv̄q ssep “ Napv̄, p, eq

rr@q c ss
e
p “ reqpp, qq ˚ rr c sseq ˚ rpypp, qq

rr c1 Ñ c2 ss
e
p “ rr c1 ss

e
p ˚ rr c2 ss

Epc1,p,eq
p

rr c1
π
ă c2 ss

e
p “ splitpp, πq ˚ rr c1 ss

π1peq
p ˚ rr c2 ss

π2peq
p ˚ joinsppq

rr c1
π
„ c2 ss

e
p “ splitpp, πq ˚ prr c1 ss

π1peq
p Z rr c2 ss

π2peq
p q ˚ joinpppq

There is enough detail in Def. 11 to warrant a more detailed comparison
with attack tree base semantics from Def. 7. Notice first that, since the event
semantics relies on the evidence-type semantics it is also parameterized by the
current entity in control p and the input evidence type e denoted by sub- and
superscripts on the semantics operator. The semantics carefully transforms these
values in recursively evaluating the semantics of sub-phrases. Nothing of this sort
exists in the attack tree semantics because data flow is not accounted for. As
mentioned above, the data flow is the key differentiator between Copland’s two
sequential operators. With c1 Ñ c2, c2 is evaluated with the evidence produced

by c1. By contrast, in c1
π
ă c2, c2 is evaluated with π2peq which is derived from

the evidence type built up before c1 and c2 are sequenced.
The “extra” events, such as reqpp, qq, splitpp, πq etc., are essential for keeping

the series-parallel graph semantics in sync with the evidence-type semantics.
However, these events to not alter the fundamental way in which the semantics
of the sub-phrases are connected. Namely, sequential operators use the sequential
composition of graphs, and the conjunction operator uses the disjoint union of
graphs. The primary difference in these connections is that Copland does not
use the corresponding ’ and operators which work on sets of graphs. This
is entirely due to the absence of a disjunctive operator in Copland. The result
is that the semantics of a given phrase is a single graph instead of a set of
graphs. In fact, we could easily re-write the Copland semantics to work on sets
of graphs using ’ and , but as the resulting sets would be singletons, there is no
advantage to doing so beyond clarifying the connection to attack tree semantics.

Based on these observations, the following table depicts a rough correspon-
dence between Copland operators and attack tree operators. As each side has
features not captured by the other, it is not a simple bijection. Furthermore,
details regarding data flow mean there is not an exact equivalence in the seman-
tics of corresponding operators. Nevertheless, this table represents a surprisingly
deep connection between the two formalisms, especially considering they were
developed independently.

The correspondence is strong enough to suggest leveraging the results from
Section 3 to obtain two preorders on Copland phrases. After all, the Copland
semantics was not designed with strength comparison in mind, just as was the
case with the original semantics for sequential attack trees. A naive approach
would be to attempt to replicate the semantics from Def. 8 and 9. But it is not

5. ATTRIBUTE DOMAINS 13

Table 1. Correspondence between Copland and Attack Tree operators.

Copland Attack Trees

apv̄q a

@q c

c1 Ñ c2 t1 Ż t2

Copland Attack Trees

c1
π
ă c2 t1 Ż t2

c1
π
„ c2 t1 Ÿ t2

t1 Ź t2

immediately obvious how to interleave the upward and downward closures with
the series-parallel graph operations. Taking inspiration from Corollary 1, we can
avoid taking upward and downward closures altogether and define two preorders
on Copland phrases as follows:

Definition 12 (Copland preorders). The two preorders ĺC
I and ĺC

F on Cop-
land phrases are defined as follows.

c1 ĺC
I c2 iff trr c2 ss

e
pu covers trr c1 ss

e
pu

c1 ĺC
F c2 iff trr c2 ss

e
pu supports trr c1 ss

e
pu

Since the Copland semantics produces a single series-parallel graph, this is
equivalent to:

c1 ĺC
I c2 iff rr c1 ss

e
p ď rr c2 ss

e
p

c1 ĺC
F c2 iff rr c2 ss

e
p ď rr c1 ss

e
p

(3)

Notice that, since the Copland semantics produces a single series-parallel graph,
c1 ĺC

I c2 iff c2 ĺC
F c1. This is not true in general for semantics that result in sets

of graphs.

5 Attribute Domains

In this section we demonstrate that the connection between attack trees and
Copland is not a superficial similarity. The syntactic correspondence identified
in the previous section allows us to transport results about attack trees to results
about Copland phrases. In particular, we focus on how the preorders of Corol-
lary 1 and Def. 12 relate to quantitative comparisons using attribute domains.

Definition 13 (Attribute domain). An attribute domain is a tuple D “

pV, f1, . . . , fnq where V is a set of values ordered by ď, and f1, . . . , fn are func-
tions associated with a set of operators o1, . . . , on. An attribute is a pair pD, νq
where D is an attribute domain and ν : A Ñ V is a function from the set of
basic actions to the set of values.

When applied to attack trees or Copland phrases, attribute domains provide
a way of giving them quantitative values, assuming a base function ν : AÑ V is
given. The value V for an attack tree or a Copland phrase is defined inductively
as follows:

Vνpaq “ νpaq Vνpt1 oi t2q “ fipVνpt1q,Vνpt2qq

14 P. Rowe

where oi is an operator, and fi is its associated function.
Since the order of functions matters in the definition of an attribute domain,

we fix an order for the operators of attack trees and Copland phrases respectively.
For attack tree attribute domains, the list of functions pf1, f2, f3q will correspond
to the list pŹ, Ÿ, Żq, in that order. For Copland attribute domains, the list of

functions pf1, f2, f3, f4q will correspond to the list p
π
„,Ñ,

π
ă,@qq, in that order.

Definition 14 (Soundness). An attribute domain D is sound with respect to
a given preorder ĺ if and only if either

– for all t1, t2, ν, t1 ĺ t2 implies Vνpt1q ď Vνpt2q, or
– for all t1, t2, ν, t1 ĺ t2 implies Vνpt2q ď Vνpt1q.

In the former case we call it co-variantly sound, in the latter case it is contra-
variantly sound.

Notice that soundness is not a bi-conditional. Completeness would involve
the reverse implication. But since many examples of interest involve using sets
of values V that are totally ordered, and since the preorders on attack trees and
Copland phrases are only preorders, we should not expect completeness in most
cases.

Horne et al. [6] identify four attribute domains that are sound with respect
to ĺI and ĺF . These are presented in Table 2.

Table 2. Some sound attribute domains for attack trees.

Attribute domain Preorder Soundness Direction Interpretation

pN,min,+,max) ĺI Contra-variant Minimum experts required

pR,min,max,+) ĺF Contra-variant Minimum attack time

pN,max,+,max) ĺF Co-variant Guards needed to counter attack

pR,max,max,+) ĺI Co-variant Time required for all attacks

The first attribute domain can represent the minimum number of experts
required to attack the system. This is like a measure of parallelism. If two ac-
tions can be done in parallel, then two distinct experts will be required to take
advantage of this parallelism. So this is a measure of the minimal parallelism al-
lowed by any attack. The second row can represent the minimum time required
to perform an attack. The third row is sort of dual to the first row in that it es-
sentially measures the maximal amount of parallelism of any attack. This could
correspond to the number of guards required to be on duty to thwart an attack.
Finally, the last row can represent the time required to make all attacks possible.

The correspondence from Table 1 suggests corresponding attribute domains
for Copland. By assigning the same functions to corresponding operators, and
by interpreting @q in such a way that it contributes nothing to the attribute,
we immediately get a few attribute domains that are sound for the Copland
semantics.

5. ATTRIBUTE DOMAINS 15

Table 3. Sound attribute domains for Copland phrases.

Attribute domain Preorder Soundness Direction

pN,+,max,max,0) ĺ
C
I Contra-variant

pR,max,+,+,0) ĺ
C
F Contra-variant

pN,+,max,max,0) ĺ
C
F Co-variant

pR,max,+,+,0) ĺ
C
I Co-variant

Theorem 4. The attribute domains in each row of Table 3 are each sound with
respect to the corresponding preorder in the indicated direction.

Theorem 4 can be proved directly, but it is also a consequence of the sound-
ness results shown in Table 2 and the structural semantic connection between
attack trees and Copland phrases.

Notice that the four attribute domains for attack trees are collapsed down
to two attribute domains for Copland. This is because the attack tree attribute
domains differ in pairs only in how disjunction is interpreted. As Copland has
no disjunction, the correspondence collapses each pair. In the context of layered
attestation, rows 1 and 3 can be interpreted as identifying the number of CPU
cores required to take advantage of parallelism. As there is only one graph, the
maximum is the same as the minimum, so these collapse to the same attribute
domain. Rows 2 and 4 correspond to the time it takes to execute a Copland
phrase. This could be interpreted as either the minimum time or the maximum
time, depending on the interpretation of the function ν used.

These attribute domains are slightly contrived in the context of Copland
because they essentially ignore the extra events that get added in the Copland
semantics. We can easily account for these by incorporating values for these
extra events into the functions corresponding to the operators that add them. For
example, if the events req, rpy, split, and join took at least q, p, s, and j time units
to complete, then we would want to consider the attribute domain specified as
pR,maxs`j ,`,`s`j , q ` pq where a `s`j b is defined to be s ` a ` b ` j and
maxs`jpa, bq is defined to be maxps ` a ` j, s ` b ` jq. This attribute domain
builds in the time for the added events in the natural way. We then easily get
two more soundness results.

Corollary 2. The attribute domain pR,maxs`j ,`,`s`j , q ` pq is co-variantly
sound with respect to ĺC

I and contra-variantly sound with respect to ĺC
F .

Proof. It is a simple exercise to verify that the consistent addition of s, j, q,
and p to the values does not affect the relative order of the resulting functions.
Soundness thus follows immediately from Thm. 4. [\

The connection between attack trees and Copland thus provides a way for us
to preorder phrases according to certain performance aspects. This is potentially
very useful in designing selection policies for layered attestations. There are
potentially numerous reasons to prefer one phrase over another, many of which
concern the performance profiles. Some of these performance profiles are well

16 P. Rowe

captured by attribute domains sound with respect to ĺC
I and ĺC

F . However,
the direct translation of Table 2 to attribute domains for Copland only yields
two attribute domains from the original four. This suggests an opportunity to
research other attribute domains that might be relevant to the performance
profile in executing a Copland phrase. Are there other dimensions along which
we would like to compare Copland phrases that are not captured by attribute
domains sound with respect to either ordering?

6 Copland Trust Ordering

Our primary interest in Copland phrases is not their performance aspects such
as how quickly they can be executed, i.e., those attributes that correspond to the
preorders defined in Section 4. We are more interested in ordering phrases based
on how well they convey system trust in the presence of an active adversary.

In this section we apply the recipe for defining preorders suggested by Corol-
lary 1 to a base semantics that incorporates adversary events into the graphs
of actions. Since Copland phrases have no syntactic elements corresponding to
adversarial actions, this semantics has a much looser connection to the syntactic
structure of a phrase. As a consequence, we must contend with the fact that
there is no straightforward way to leverage attribute domains as in the previous
section.

The base adversarial semantics for Copland phrases derives from our prior
work on layered attestations [12] in which we established a suitable adversary
model. Concretely, we assume that adversaries can corrupt and repair compo-
nents at will. Corrupted measurers will fail to detect any corruption in their
targets. If the target of a measurement is corrupt before it is measured, then
to avoid detection the adversary must either repair the target or corrupt the
measurer (or some component the measurer depends on to correctly measure).
In this model it is always possible for the adversary to undetectably corrupt a
given component. But we can ask, “assuming that some given target was corrupt
at the time it was measured, and that the attestation detects no corruptions,
what else must the adversary have done to avoid detection?”

We recently developed a tool chain to answer such questions [14]. This tool
chain computes all minimal, adversarial executions consistent with the tradi-
tional Copland semantics of Def. 11, together with some initial assumptions or
hypotheses H. These include assumptions of the form that some set of compo-
nents are corrupt at the time they are measured, and that all corruptions go
undetected.

Let us denote this minimal set computed by the tool chain as AHptq, where
A indicates it is an adversary-enriched semantics, and H denotes the particular
hypotheses assumed. This is a set of graphs with extra structure to encode
assumptions about which components are corrupt at which events. Taking this
as our new “base” semantics, we again define new two preorders on Copland
phrases. This time they are parameterized by the hypotheses H used in the
computation of the semantics.

6. COPLAND TRUST ORDERING 17

Definition 15 (Copland trust ordering).

c1 ĺH
I c2 iff AHpc2q covers AHpc1q

c1 ĺH
F c2 iff AHpc2q supports AHpc1q

Def. 15 is a mechanical application of the recipe suggested by Corollary 1. A
key question is whether these preorders correspond to the strength of a Copland
phrase, i.e., its ability to accurately convey trust information in the presence of
an active adversary. Do either of the preorders in Def. 15 capture a useful notion
of trustworthiness? If so, which one?

To better understand the situation, consider the notion of trustworthiness
developed in [12]. As mentioned above, the underlying adversary model always
admits ways for the adversary to corrupt components without being detected. It
can simply corrupt components between the time they are measured and the time
they take a measurement. Alternatively, it can corrupt components deep enough
in the system to undermine measurements at higher layers. We refer to these
two strategies as recent or deep corruptions, respectively. Thus, recent or deep
strategies allow an adversary to go undetected by an attestation. The primary
question becomes whether or not the adversary has any other strategies that
might be easier to perform. A rough measure of the strength of a Copland phrase
is to say that it is strong (or strong enough) if the recent or deep corruption
strategies are the only ones that will succeed.

Since the new base semantics AHp¨q is not inductively defined according to
the syntactic structure of a Copland term, we cannot meaningly define attribute
domains in the same way as Section 5. However, we can still define natural
maps into other ordered sets that clearly correspond to the notion of trust de-
scribed above. In particular, we can define a mapping RD (for recent or deep)
of Copland phrases into the 2-point lattice tK,Ju. RDpcq “ J if the only way
for an adversary to avoid detection is by employing recent or deep strategies.
RDpcq “ K if there is some strategy that is neither recent nor deep that still
allows the adversary to avoid detection. In fact, this mapping will depend on the
set of hypotheses H as described above. Thus, we really have a family of maps
RDH : Copland Ñ tK,Ju and a corresponding family of induced orders ĺH

RD . At
a coarse level, then, we consider a Copland phrase c to be sufficiently trustworthy
relative to hypotheses H if RDHpcq “ J, and untrustworthy otherwise.

We can now ask whether either of the preorders of Def. 15 capture the notion
of trust described above. That is, we can ask if either of c1 ĺH

I c2 or c1 ĺH
F c2

implies the same (or possibly opposite) order on RDHpc1q and RDHpc2q. This
would be a type of soundness of RDH with respect to the preorders.

To investigate this question, consider a simple attestation scenario involving
two measurements. Atomic Copland phrase m1px, yq represents the measurement
of some component y by a well-protected component x. Atomic phrase m2py, zq
represents the measurement of component z by component y. Thus, x represents
a “deep” component of the system. There are (at least) three natural ways to

18 P. Rowe

order these measurements.

c1 “ m1px, yq
π
„ m2py, zq (4)

c2 “ m2py, zq
π
ă m1px, yq (5)

c3 “ m1px, yq
π
ă m2py, zq (6)

Using the tool chain we developed in [14] we can compute AHpciq for 1 ď i ď 3,
where H is the hypothesis that z is corrupt when it is measured. The details of
how they are computed are well beyond the scope of this work, but the results
are shown in Figures 1–3. The figures show the transitive reduction of the edge
relations which are all transitive. This semantics also “forgets” non-measurement
events. The events labeled cp¨q (respectively rp¨q) represent an event in which the
adversary corrupts (respectively repairs) the given component.

cpxq

cpyq

cpzq

m1px, yq

m2py, zq

cpyq

cpzq
m2py, zq rpyq m1px, yq

m1px, yq cpyq m2py, zq

cpzq

Fig. 1. The three graphs in AHpc1q.

cpyq

cpzq
m2py, zq rpyq m1px, yq

cpyq

cpzq

m2py, zq

cpxq

m1px, yq

Fig. 2. The two graphs in AHpc2q.

cpxq

cpyq

m1px, yq

cpzq

m2py, zq m1px, yq cpyq m2py, zq

cpzq

Fig. 3. The two graphs in AHpc3q.

Phrases c1 and c2 each admit executions in which the deep component x
is not corrupted, and the corruptions of y and z need not occur recently (e.g.

6. COPLAND TRUST ORDERING 19

after the start of the attestation). Thus RDHpc1q “ RDHpc2q “ K. In the
executions admitted by c3, there is either a deep corruption of x, or there is a
recent corruption of y. Thus RDHpc3q “ J.

We can similarly determine which of the sets AHpciq cover or support which
others. It is a simple exercise to check that AHpc1q supports both AHpc2q and
AHpc3q, and that neither of the latter two support each other. Also, none of the
sets covers any of the others. Thus, the only orders involving ĺH

I and ĺH
F that

hold are c2 ĺH
F c1 and c3 ĺH

F c1.
This small investigation suggests that ĺH

RD is not related to ĺH
I , but that

it might be related (contravariantly) to ĺH
F . Indeed, we can prove that ĺH

RD is
contravariantly sound with respect to ĺH

F .

Theorem 5. If c1 ĺH
F c2 then c2 ĺH

RD c1.

Proof. Since c2 ĺH
RD c1 holds for all values of RDHpc1q and RDHpc2q except

RDHpc2q “ K and RDHpc1q “ J, it suffices to show that whenever c1 ĺH
F c2

and RDHpc1q “ J then RDHpc2q “ J as well.
First note that RDHpc1q “ J means that for every G P AHpc1q, G contains

a recent corruption or a deep corruption. Also, recent and deep corruptions are
both preserved under homomorphisms. Since c1 ĺH

F c2, we know that for every
G2 P AHpc2q, there is some G1 P AHpc1q such that G1 ď G2. But since G1 has a
recent or deep corruption, this is preserved by the homomorphism to G2. Thus
every element of AHpc2q has a recent or deep corruption. So RDHpc2q “ J. [\

Theorem 5 is encouraging. It shows that the generalized up-set (adversary-
enriched) semantics for Copland captures an intuitive, and independently defined
notion of trust. This works out despite the fact that we are in a setting where the
“base” semantics is given as an arbitrary set of structures not explicitly tied to
the syntax. In fact, it is encouraging enough to suggest that research in attack
trees might benefit from applying such a generalization. For example, attack-
defense trees have been proposed as a richer formalism to discuss offensive and
defensive strategies for system security. Could there be a semantics in the spirit
of the adversary-enriched semantics for Copland that could be leveraged in this
way to order attack(-defense) trees? Copland’s tracking of dataflow could also
be replicated to enrich the semantics of attack trees along that dimension.

Nevertheless, the soundness of Theorem 5 is a little unsatisfying. For one
thing, the same soundness does not hold for the strict preorders. This is evident
from the fact that c2 ăH

F c1 but c1 ćH
RD c2. It is, in some sense, too sensitive

to differences in Copland phrases. Just because two phrases are strictly ordered,
we cannot conclude that one must force the adversary into recent or deep cor-
ruptions. Thus, we can only leverage c1 ĺH

F c2 for our purposes if we know
RDHpc2q “ J or RDHpc1q “ K. The fact that c2 and c3 are ĺH

F -incomparable
is also worrisome. Knowing that one phrase forces the adversary into recent or
deep corruptions and the other doesn’t is not enough to guarantee they will be
ordered by ĺH

F . This indicates that ĺH
F is, in some sense, not sensitive enough.

Theorem 5 encourages us to push forward with new ideas for ordering Cop-
land phrases (or other formalisms), but it raises at least as many questions as

20 P. Rowe

it answers. What security aspects is ĺH
F really capturing beyond the notion of

recent or deep adversary strategies? Is soundness enough to view it as a general-
ization of the 2-point lattice ordering, or do the issues in the previous paragraph
undermine that viewpoint? Is there a logical characterization of the content of
models found in AHpcq that enables soundness with respect to logical implica-
tion? We hope the investigation of this paper will spur research along these lines.
The generality of the approach enables progress to be made by those working in
diverse subfields of formal methods for security.

7 Cryptographic Protocols

While we were spurred to investigate the connection between attack trees and
Copland due to the similarities in their underlying syntax and semantics, the re-
sults of Section 6 show that the general construction can yield interesting results
even in cases with semantics that are utterly unrelated to that of attack trees.
Therefore, before concluding, we make a brief detour into the world of crypto-
graphic protocols to demonstrate the generality of the recipe for constructing
preorders suggested by Corollary 1.

In 2016, Guttman, together with the author and our colleague Moses Liskov
established a methodology for determining a strength order on cryptographic
protocols [13]. As we outline below, the preorder generated in this way seems to
correspond to the preorder that would arise from the construction we have used
repeatedly throughout this paper. Due to space limitations, we can only give a
very high-level overview, and the correspondence, while highly suggestive, is still
technically conjectural.

The general idea from [13] is to derive a logical formula

LpΦ,P q “ @X.pΦ ùñ
ł

1ďiďn

DY.Ψiq

that expresses the strongest conclusion achievable by protocol P from hypoth-
esis Φ. For those familiar with CPSA, Φ represents the input to a search, and
each Ψi represents one of the shapes of protocol P , while X and Y range over
events and the variables used in messages. In general, protocols need their own
set of predicates to describe their possible executions. That is, a predicate say-
ing that some role of protocol P1 has executed some number of steps with a
given set of parameters will not, in general, have an interpretation in the ex-
ecutions of protocol P2. However, when the protocols are sufficiently similar,
the same logical language can easily apply to both protocols. This allows us to
create a preorder on protocols parameterized by the hypothesis Φ: P1 ĺΦ P2 iff
LpΦ,P2q ùñ LpΦ,P1q. This says that P2 is stronger than P1 (with respect to Φ)
if any goal achieved by P1 is also achieved by P2.

It has been shown in [9] that LpΦ,P q corresponds to a run of the protocol an-
alyzer CPSA [10] when provided an input A that corresponds to Φ. CPSA works
in the strand spaces model of cryptographic protocols (pioneered by Guttman),

7. CRYPTOGRAPHIC PROTOCOLS 21

and produces the minimal, essentially different executions of a protocol con-
sistent with some initial assumptions. Concretely, given a skeleton (i.e. partial
execution) A of protocol P , it produces a finite set SApP q of realized skeletons
(i.e. full executions) B for which A ď B.2 Furthermore, SApP q supports the set
of all realized skeletons C satisfying A ď C. That is, for all realized skeletons C
such that A ď C, there is an element B P SApP q such that B ď C.

The correspondence between LpΦ,P q and CPSA’s search arises from the abil-
ity to associate to every skeleton A a characteristic formula χpAq. For certain
syntactic classes of formulas Φ we can revert the process to get a characteristic
skeleton σP pΦq. (The inverse σP depends on the protocol because different pro-
tocols admit different structures.) For our purposes we may assume these two
processes are inverses. Thus, in the previous paragraph, we choose A to be σP pΦq.
The correspondence is completed by the fact that Ψi “ χpBiq for Bi P SP pAq [9].

When comparing the strength of two protocols, we start with a common
hypothesis Φ. We then translate that hypothesis into (possibly distinct) skeletons
A1 “ σP1

pΦq and A2 “ σP2
pΦq of P1 and P2 respectively. Applying CPSA, we

obtain the two sets of shapes SA1
pP1q and SA2

pP2q. We then recover LpΦ,Piq by
applying χ to the sets of shapes. This now gives us access to the preorder ĺΦ.

One key advantage of converting CPSA’s analysis back into logical form is
that it allows direct comparison between the results. Due to the detailed message
structure that is purposefully not represented in the logical formulas, we typically
can’t talk about homomorphisms between skeletons of two different protocols.
This prevents us from directly applying our recipe for defining preorders that
requires us to determine whether SA1

pP1q covers or supports SA2
pP2q, or vice

versa. The translation into logic acts as a substitute in much the same way that
Horne et al. [6] define a translation into linear logic to help them compute the
comparisons. However, Guttman has developed a way to convert skeletons of
P1 into skeletons of P2, provided there is a well-defined protocol transformation
T : P1 Ñ P2 [3]. So if A1 is a skeleton of P1, then T pA1q is a skeleton of
P2. Furthermore, for sufficiently close protocols, χpA1q “ χpT pA1qq. (For more
distantly related protocols, the equality must be downgraded to an equivalence.)
Using this theory of protocol transformation we conjecture that the ĺΦ preorder
corresponds to one of the preorders generated using Theorem 3.

Conjecture 1. Suppose that σP1
pΦq “ A1 and σP2

pΦq “ A2. Let T : P1 Ñ P2

be a well-defined protocol transformation. Then

P1 ĺΦ P2 iff SA2pP2q covers T pSA1pP1qq, and

P2 ĺΦ P1 iff T pSA1pP1qq covers SA2pP2q.

We leave it as a conjecture for now because a treatment that attends to all
the details about protocol transformations and conversions to and from logical
formulas would require considerable care and is beyond the aims of this paper.
Indeed, it is not entirely clear that the bi-implication is correct. Perhaps it only
follows that if the semantic sets are in the right covering relationship, then the

2 For technical reasons, we must restrict ourselves to injective homomorphisms only.

22 P. Rowe

corresponding order holds. Our main purpose is to highlight similarities and
differences with the preorders from earlier sections to gain insights into how we
might fruitfully generalize the approach to generating preorders.

We conclude with a few remarks about this conjecture that speak to the gen-
erality of our construction. Firstly, although, skeletons of a protocol are graph-
like, they actually contain more information than is contained in the structures
for attack trees or Copland phrases. This demonstrates that the approach is not
tied to semantics that use sets of graphs, but can apply to other structures that
admit a homomorphism ordering. Additionally, the conjecture would not hold
if we restricted attention to smoothing homomorphisms only as is done in [6].
P1 ĺΦ P2 will hold when the shapes of P2 can infer the existence of more activ-
ity (more nodes of the graph), not just more orderings among events. This was
one of the principal drivers for our choice not to restrict ourselves to smooth-
ing homomorphisms in Section 3 which resulted in an alteration to the up-set
semantics compared to it counterpart in [6].

Just as in Section 6, the base CPSA semantics is not tightly tied to the syntax
of protocols. So, although we cannot easily define attribute domains for protocols,
the translation into logic can be viewed as serving a similar purpose. Indeed,
because the logical content captures all the needed details, the corresponding
order is not only sound, but the conjecture is that it is also complete with
respect to the order defined through our construction. If true, this would mean
that the preorder constructed according to the methods of this paper precisely
capture the intended content of security goals. The connection between ĺH

RD

and ĺH
F in Section 6 was much weaker. Perhaps we could identify a sound and

complete logical characterization of ĺH
F that comes with a clear interpretation

in terms of trust.
Finally, notice that the conjecture only uses the notion of “covers” and not the

notion of “supports”. Thus, ĺΦ is a kind of down-set semantics. That is, it shares
the same form as the ĺI order on attack trees. If we write it as ĺΦ

I , this suggests
the natural alternative ĺΦ

F defined according to an up-set semantics. That is,
which P1 ĺΦ

F P2 when T pSA1
pP2qq supports SA2

pP1q. It is not immediately
clear what this preorder captures. We consider it an open problem to provide a
preorder with a natural interpretation that corresponds to (or at least is sound
with respect to) ĺΦ

F .

8 Conclusion

In this paper we explored numerous security-related preorders from the litera-
ture. We developed a way to generalize specialization preorders of attack trees [6]
to essentially any formalism which has a set-based denotational semantics for
which there exists a notion of homomorphism on elements of the sets. In partic-
ular, we defined the two notions of covers and supports, and showed how these
generate a preorder on the semantic sets that corresponds to the up- and down-
set semantics of attack trees respectively. We applied this general construction to
Copland phrases for layered attestation in two settings. The first is an adversary-

8. CONCLUSION 23

free setting in which the preorders correspond to certain performance aspects of
the intended executions. The second is an adversary-enriched setting in which
the semantics no longer closely reflects algebraic properties of the syntax. Along
the way we identified a similarity to preorders defined on cryptographic proto-
cols. While the details are beyond this paper, we conjectured that the protocol
preorders can be viewed as an instance of the general construction used here.

While our focus has been on three formalisms, the results obtained are sug-
gestive that the construction may have a much greater reach. But the current
study also raises some questions. The protocol preorder is constructed using the
covers relation, while the corresponding construction for Copland adversarial
semantics requires the supports relation. It is not clear when to expect the use of
one versus the other. In fact, the covers and supports notions have been previ-
ously identified as providing a basis for constructing powerdomains for programs
with non-deterministic execution [8, 18]. A more thorough investigation into the
relation of the current study with that past work may shed light on our questions
and suggest a more abstract standpoint from which to view security orderings.

Acknowledgments

I would like to thank Ian Kretz and John Ramsdell for our continued collab-
oration on the topic of layered attestation. This paper arose out of our earlier
shared attempt to leverage attack trees to help order Copland phrases.

References

1. Adão, P., Focardi, R., Guttman, J.D., Luccio, F.L.: Localizing firewall security
policies. In: 2016 IEEE 29th Computer Security Foundations Symposium (CSF).
pp. 194–209 (2016). https://doi.org/10.1109/CSF.2016.21

2. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni-
versity Press, 2 edn. (2002). https://doi.org/10.1017/CBO9780511809088

3. Guttman, J.D.: Establishing and preserving protocol security goals. Journal of
Computer Security 22(2), 203–267 (2014). https://doi.org/10.3233/JCS-140499

4. Helble, S.C., Kretz, I.D., Loscocco, P.A., Ramsdell, J.D., Rowe, P.D., Alexander,
P.: Flexible mechanisms for remote attestation. ACM Trans. Priv. Secur. 24(4)
(Sep 2021). https://doi.org/10.1145/3470535

5. Horne, R.: The consistency and complexity of multiplicative additive sys-
tem virtual. Scientific Annals of Computer Science 25(2), 245–316 (2015).
https://doi.org/10.7561/SACS.2015.2.245

6. Horne, R., Mauw, S., Tiu, A.: Semantics for specialising attack trees based on linear
logic. Fundam. Informaticae 153(1-2), 57–86 (2017). https://doi.org/10.3233/FI-
2017-1531

7. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees
with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) ICT Systems
Security and Privacy Protection. pp. 339–353. Springer International Publishing,
Cham (2015). https://doi.org/10.1007/978-3-319-18467-8 23

8. Plotkin, G.D.: A powerdomain construction. SIAM J. Comput. 5(3), 452–487
(1976). https://doi.org/10.1137/0205035

24 P. Rowe

9. Ramsdell, J.D.: Deducing security goals from shape analysis sentences. CoRR
abs/1204.0480 (2012)

10. Ramsdell, J.D., Guttman, J.D., Liskov, M.D., Rowe, P.D.: The CPSA specification:
A reduction system for searching for shapes in cryptographic protocols (2012)

11. Ramsdell, J.D., Rowe, P.D., Alexander, P., Helble, S.C., Loscocco, P., Pendergrass,
J.A., Petz, A.: Orchestrating layered attestations. In: Nielson, F., Sands, D. (eds.)
Principles of Security and Trust. pp. 197–221. Springer International Publishing,
Cham (2019). https://doi.org/10.1007/978-3-030-17138-4 9

12. Rowe, P.D.: Confining adversary actions via measurement. In: Kordy, B., Ekstedt,
M., Kim, D.S. (eds.) Graphical Models for Security. pp. 150–166. Springer Inter-
national Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-46263-9 10

13. Rowe, P.D., Guttman, J.D., Liskov, M.D.: Measuring protocol strength with secu-
rity goals. Int. J. Inf. Sec. 15(6), 575–596 (2016). https://doi.org/10.1007/s10207-
016-0319-z

14. Rowe, P.D., Ramsdell, J.D., Kretz, I.D.: Automated trust analysis of Copland
specifications for layered attestation. In: Proceedings of the 23rd International
Symposium on Principles and Practice of Declarative Programming. PPDP ’21,
Association for Computing Machinery, New York, NY, USA (2021)

15. Schneier, B.: Attack trees. Dr. Dobb’s Journal 24(12), 21–29 (1999)
16. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs.

In: Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing.
p. 1–12. STOC ’79, Association for Computing Machinery, New York, NY, USA
(1979). https://doi.org/10.1145/800135.804393

17. Wide l, W., Audinot, M., Fila, B., Pinchinat, S.: Beyond 2014: Formal methods
for attack tree–based security modeling. ACM Comput. Surv. 52(4) (Aug 2019).
https://doi.org/10.1145/3331524

18. Winskel, G.: On powerdomains and modality. Theoretical Computer Science 36,
127–137 (1985). https://doi.org/https://doi.org/10.1016/0304-3975(85)90037-4

